

Projektbericht Kommunale Wärmeplanung Verbandsgemeinde Ruwer

Impressum

Kommunale Wärmeplanung Ruwer

Auftraggeber: Verbandsgemeinde Ruwer, Untere Kirchstraße 1, 54320 Waldrach

Durchgeführt durch die BMU Energy Consulting GmbH

Autoren:

Dr.-Ing Björn Uhlemeyer

Jöran Schirmer

Joel Weigel

Anschrift:

BMU Energy Consulting GmbH

Lise-Meitner-Straße 1-13

42119 Wuppertal

E-Mail: info@bmu-energy-consulting.de

Webseite: https://bmu-energy-consulting.de/

Datum:

Oktober 2024

<u>Titelbild-Bildnachweis:</u>

Basierend auf Google Earth: GeoBasis-DE/BKG (©2009) Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Logo VG Ruwer: https://upload.wikimedia.org/wikipedia/commons/8/8d/DEU_Verbandsgemeinde_Ruwer_COA.svg

Inhalt

In	npress	sum	2
In	halt		3
K	urzfas	sung	5
Α	bkürzı	ungsverzeichnis	7
1	Ein	leitung	8
2	Gru	undlagen der kommunalen Wärmeplanung	10
	2.1	Projektablauf	10
	2.2	Verbindlichkeit der kommunalen Wärmeplanung	10
	2.3	Was kann man von der kommunalen Wärmeplanung erwarten?	11
	2.4	Methode und Konzept "digitaler Zwilling"	11
	2.5	Datenschutz	12
	2.6	Gesetzliche Anforderungen	13
	2.7	Energiebedarf in Deutschland	21
	2.8	Detaillierte Analyse des Wärmbedarfes	22
	2.9	Sanierung	30
	2.10	EE-Technologien zur Wärmeerzeugung	37
	2.11	Wärmenetze	48
	2.12	Wirtschaftlichkeitsgrundlagen	50
3	Bes	standsanalyse	55
	3.1	Allgemeines	55
	3.2	Vorprüfung und Ausschluss	58
	3.3	Endenergieverbrauch und Emissionen	58
	3.4	Kartografische Analysen	62
	3.5	Gasnetz	70
	3.6	Wärmenetz	70
4	Pot	tenzialanalyse	71
	4.1	Allgemeines	71
	4.2	Solare Potenziale	71
	4.3	Geothermie	72
	4.4	Gewässer	73
	4.5	Biomasse	75
	4.6	Abwasser	75

	4.7	Warme- und Gasspeicher	/ /
	4.8	Anlagen für H_2 oder synthetische Gase	77
	4.9	Industrielle Abwärme	77
	4.10	Zusammenfassung der Potenziale	78
5	Er	ntwicklung der Zielszenarien	80
	5.1	Allgemeines	80
	5.2	Technologiewechsel	80
	5.3	Wärmepumpeneignungsidentifikation	84
	5.4	Wärmenetz- und Wärmepumpeneignung	85
	5.5	Auswirkungen der Sanierung	86
	5.6	Ergebnisse der Szenarien	89
6	St	trategie und Maßnahmenkatalog	96
	6.1	Einteilung des beplanten Gebiets in voraussichtliche Wärmeversorgungsgebiete	96
	6.2	Übersicht über die Wärmenetzeignungsgebiete in Kombination mit den Potenzialen	98
	6.3	Ortsgemeinde spezifische Steckbriefe mit Empfehlungen	99
	6.4	Darstellung der Umsetzungsstrategie und von Umsetzungsmaßnahmen	140
	6.5	Zusammenfassung der Strategie	142
7	V	erstetigungskonzept	144
	7.1	Aufgaben der Akteure	144
	7.2	Maßnahmen zur Verstetigung	145
8	C	ontrollingkonzept	146
	8.1	Akteursübergreifende Aufgaben	146
	8.2	Akteurspezifische Aufgaben im Controlling-Prozess	147
	8.3	Maßnahmen zur Implementierung des Controlling-Konzepts	147
9	В	eteiligung und Kommunikation	149
	9.1	Einrichtung einer Projektwebseite	149
	9.2	Einbindung der Ortsbürgermeister	149
	9.3	Kommunikation über E-Mail	149
1()	Literaturverzeichnis	150
1	1	Abbildungsverzeichnis	152
1:)	Tabellenverzeichnis	153

Kurzfassung

Die Wärmewende ist eine gesamtgesellschaftliche Herausforderung. Von den etablierten öl- und gasbasierten Heizungen hin zu einer klimaneutralen Wärmeversorgung zu kommen, ist eine große Herausforderung. In der Verbandsgemeinde Ruwer betrifft dies insbesondere die ölbasierten Heizungen, welche in der ländlichen Struktur oft auch in einer Kombination mit einem Kaminofen vorkommen. Um eine klimaneutrale Wärmeversorgung auszugestalten, gibt es nur wenige Optionen. Dabei sind insbesondere Wärmepumpen und Wärmenetze die vielversprechendsten Versorgungsarten. Ländliche Strukturen mit einer lockeren Bebauung eignen sich grundsätzlich eher weniger für eine rohrleitungsgebundene Wärmeversorgung, da die Verluste oft zu hoch sind und damit die Kosten für die Wärme überproportional groß sind.

Die Untersuchung und die Analyse in dieser kommunalen Wärmeplanung zeigt auf, dass sich die Ortskerne der Gemeinden Gusterath, Mertesdorf, Morscheid, Osburg, Thomm und Waldrach aufgrund der Wärmebedarfsdichte und der Potenziale aus erneuerbaren Wärmequellen für Wärmenetze eignen könnten. Die Wärmeplanung gibt wie beschrieben jedoch noch keine Gewissheit, ob die Wärmenetze wirklich entstehen, sondern ist ein strategischer Plan und eine Empfehlung diese potenziellen Wärmenetze in einer Machbarkeitsstudie im Detail zu planen und die Wirtschaftlichkeit zu berechnen. Erst dann kann in einen detaillierten Diskurs mit den Bürgern die Anschlussbereitschaft eruiert werden. Denn nur wenn die Wirtschaftlichkeit gegeben ist und die Bürger von dem Konzept überzeugt sind, schließen sich genügend Haushalte an das Wärmenetz an und erst dann kann die Wirtschaftlichkeit auch erzielt werden. Die meisten der Gebäude, die nicht in den potenziellen Wärmenetzeignungseignungsgebieten liegen, weisen nach der beschriebenen Methode eine Eignung für Wärmepumpen auf. Dabei kann in der vorliegenden flächendeckenden Betrachtung der Verbandsgemeinde jedoch keine gesicherte Aussage der Eignung Gebäude und ggf. notwendigen Maßnahmen im Zusammenhang mit dem Einbau von Wärmepumpen getroffen werden.

Abbildung 1 zeigt auf welche Optionen im Rahmen des Heizungswechsel bzgl. der Fristen vorliegen. Da sich Hybrid-Wärmepumpen in der Wirtschaftlichkeitsanalyse in den vorliegenden Gebäuden in der Regel nicht als nächstbeste Lösung herausgestellt haben, sollte bei Gebäuden, die weder für Wärmepumpen geeignet sind noch in Wärmenetzeignungsgebieten liegen, insbesondere biomassebasierte Heizungen, wie Pelletheizungen, als Wärmeversorgungssystem in Erwägung gezogen werden.

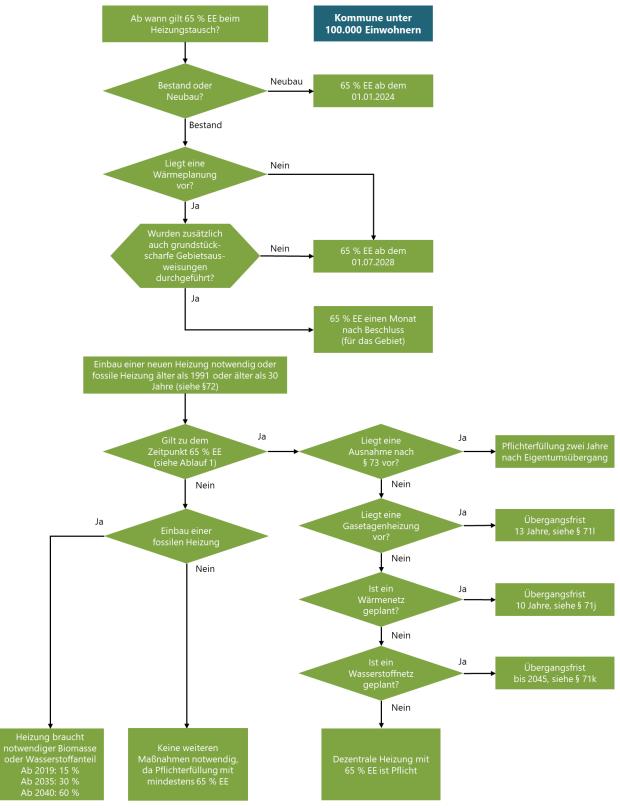


Abbildung 1: Handlungsempfehlungen für Immobilieneigentümer nach Veröffentlichung der Wärmeplanung

Abkürzungsverzeichnis

Abkürzung	Bedeutung

BAFA Bundesamt für Wirtschaft und Ausfuhrkontrolle BEW Bundesförderung für effiziente Wärmenetze

BHKW Blockheizkraftwerk

CO₂ Kohlendioxid

COP Coefficient of Performance

DDR Deutsche Demokratische Republik

EE Erneuerbare Energien
EnEV Energiesparverordnung
EU Europäische Union
GEG Gebäudeenergiegesetz

GHD Gewerbe-Handel-Dienstleistungen
GIS Geographische Informationssysteme

GWh Gigawattstunden

IKT Informations- und Kommunikationstechnik

iSFP Individueller Sanierungsfahrplan IWU Institut Wohnen und Umwelt

JAZ Jahresarbeitszahl

KfW Kreditanstalt für Wiederaufbau

kWh Kilowattstunden

KWK Kraft-Wärme-Kopplung KSG Klimaschutzgesetz

LPG Flüssiggas

MWh Megawattstunden PV Photovoltaik

PVT Photovoltaik-Thermisch
ROI Return on Investment
THG Treibhausgasemissionen

WE Wohneinheit

WPG Wärmeplanungsgesetz WSchV Wärmeschutzverordnung

1 Einleitung

Kommunen in Deutschland sind seit Anfang 2024 zur Erstellung und Weiterschreibung kommunaler Wärmepläne verpflichtet. Mit dem Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (Wärmeplanungsgesetz - WPG) wird den Bundesländern die Aufgabe der Durchführung einer Wärmeplanung für ihr Hoheitsgebiet verpflichtend auferlegt. Die Länder werden diese Pflicht auf Rechtsträger innerhalb ihres Hoheitsgebiets bzw. auf eine zuständige Verwaltungseinheit übertragen.

Grundlegende Aufgabenstellung dabei ist die Entwicklung einer Strategie für die langfristig CO₂neutrale Wärmeversorgung des Gebietes der Kommune bis zum Jahr 2045. Der kommunale Wärmeplan zeigt dafür den Status quo der Wärmeversorgung sowie verschiedenste Perspektiven der Wärmeversorgung aus erneuerbaren Energiequellen und Abwärme auf. Über einen Zwischenstand für
das Jahr 2030 und 2040 ist daraus das klimaneutrale Zielszenario 2045 zu entwickeln.

Für die Umstellung der Erzeugung von Raumwärme, Warmwasser und Prozesswärme aus fossilen auf erneuerbare Energien und unvermeidbare Abwärme in Deutschland bis spätestens zum Jahr 2045 ist eine erhebliche Steigerung der Bemühungen notwendig. Mehr als die Hälfte der in Deutschland verbrauchten Endenergie wird für die Bereitstellung von Wärme eingesetzt. Für die Erzeugung von Raumwärme kommen nach wie vor zu einem überwiegenden Anteil Erdgas sowie Heizöl zum Einsatz. Der Anteil erneuerbarer Energien beträgt in der Erzeugung von Raumwärme in privaten Haushalten in Deutschland aktuell lediglich ca. 18 Prozent. Etwa 14 Prozent der Haushalte in Deutschland werden derzeit über Fernwärme versorgt. Auch hier beträgt der Anteil erneuerbarer Energien nur etwa 20 Prozent. Die Bereitstellung von Prozesswärme erfolgt zum Großteil über Erdgas und Kohle, der Anteil erneuerbarer Energien liegt hier lediglich bei rund sechs Prozent. Ohne eine signifikante Reduktion des Wärmeverbrauchs und einen gleichzeitig erheblich beschleunigten Ausbau der erneuerbaren Energien können die Ziele des Bundes-Klimaschutzgesetzes (KSG) nicht erreicht werden. Neben der notwendigen flächendeckenden Umstellung der dezentralen Wärmeversorgung von Gebäuden auf erneuerbare Energien, die insbesondere mit dem Gebäudeenergiegesetz (GEG) erreicht werden soll, ist als zweite Säule einer effizienten und treibhausgasneutralen Wärmeversorgung die leitungsgebundene Wärmeversorgung über Wärmenetze weiter verstärkt und beschleunigt auszubauen und sind Wärmenetze bis spätestens 2045 vollständig auf die Nutzung erneuerbarer Energien und unvermeidbarer Abwärme umzustellen.

Den Städten und Gemeinden kommt für das Gelingen der Wärmewende eine entscheidende Rolle zu. Die relevanten Weichenstellungen werden nicht nur auf Bundes- und Landesebene, sondern vor Ort getroffen. Daher entscheiden die langfristigen und strategischen Entscheidungen darüber, wie die Wärmeversorgung organisiert und in Richtung Treibhausgasneutralität transformiert wird. Gemeinsam mit den Bürgern und Unternehmen müssen weitere Planungsprozesse vorbereitet, diskutiert, beschlossen und anschließend umgesetzt werden. Dieser Prozess, der als Wärmeplanung bezeichnet wird, soll mit diesem Gesetz einen einheitlichen Rahmen erhalten.

Die aktuellen Ziele der Bundesregierung, auf welche die kommunale Wärmeplanung insbesondere eingehen soll, sind:

- Bis zum Jahr 2030 soll im bundesweiten Mittel 50 Prozent der leitungsgebundenen Wärme klimaneutral erzeugt werden.
- Bestehende Wärmenetze müssen ab dem Jahr 2030 zu einem Anteil von mindestens 30 Prozent und bis 2040 von mindestens 80 Prozent mit Wärme aus erneuerbaren Energien unvermeidbarer Abwärme oder einer Kombination daraus gespeist werden.
- Für neue Wärmenetze wird mit den neuen Vorgaben des GEG ein Erneuerbaren Energien-/ unvermeidbarer Abwärme-Anteil von 65 Prozent verlangt.

2 Grundlagen der kommunalen Wärmeplanung

2.1 Projektablauf

Der Projektablauf der kommunalen Wärmeplanung in der Verbandsgemeinde Ruwer gliedert sich in vier Hauptphasen: Bestandsanalyse, Potentialanalyse, Szenarioentwicklung und Wärmewendestrategie. In der ersten Phase, der Bestandsanalyse, wird der aktuelle Wärmebedarf ermittelt, die bestehende Infrastruktur untersucht und relevante Daten gesammelt. Das Ergebnis dieser Phase ist eine räumliche Darstellung des Wärmebedarfs. In der zweiten Phase, der Potentialanalyse, werden die Potenziale zur Effizienzsteigerung identifiziert und bewertet sowie die Möglichkeiten zur Nutzung erneuerbarer Wärmequellen und Abwärme analysiert. Das Resultat dieser Phase sind Potenzialkarten, die die identifizierten Potenziale räumlich darstellen. In der dritten Phase, der Szenarioentwicklung, werden konkrete Ziele für die zukünftige Wärmeversorgung definiert, Meilensteine zur Zielerreichung festgelegt und bestehende Pläne integriert. Das Ergebnis dieser Phase ist ein Zielszenario. Die vierte und letzte finale Phase ist die Wärmewendestrategie, in der geplante Maßnahmen sowie Fördermittel festgelegt werden und in einem Maßnahmenplan resultieren. Während des gesamten Prozesses werden Monitoring und Fortschreibung sowie die Beteiligung von Akteuren kontinuierlich durchgeführt.

2.2 Verbindlichkeit der kommunalen Wärmeplanung

Da die Wärmewende und die Gesetzgebung in den letzten Monaten und Jahren an einigen Stellen zu Verwirrung geführt hat, möchten wir hier kurz auf die Verbindlichkeit, die zum Zeitpunkt der Erstellung der Studie gilt, darstellen. Diese ergibt sich aus dem Wärmeplanungsgesetz [1]. Nachfolgend sind die aus unserer Sicht wesentlichen Auszüge zitiert:

Definition der Wärmeplanung

"[Die] Wärmeplanung [ist] eine rechtlich unverbindliche, strategische Fachplanung, die

- a) Möglichkeiten für den Ausbau und die Weiterentwicklung leitungsgebundener Energieinfrastrukturen für die Wärmeversorgung, die Nutzung von Wärme aus erneuerbaren Energien, aus unvermeidbarer Abwärme oder einer Kombination hieraus sowie zur Einsparung von Wärme aufzeigt und
- b) die mittel- und langfristige Gestaltung der Wärmeversorgung für das beplante Gebiet beschreibt"

sowie

§ 26 Entscheidung über die Ausweisung als Gebiet zum Neu- oder Ausbau von Wärmenetzen oder als Wasserstoffnetzausbaugebiet

- (1) "Unter Berücksichtigung der Ergebnisse der Wärmeplanung nach § 23 und unter Abwägung der berührten öffentlichen und privaten Belange gegen- und untereinander kann die planungsverantwortliche Stelle oder eine andere durch Landesrecht hierzu bestimmte Stelle eine Entscheidung über die Ausweisung eines Gebiets zum Neu- oder Ausbau von Wärmenetzen [...] treffen. Die Entscheidung erfolgt grundstücksbezogen.
- (2) Ein Anspruch auf Einteilung eines Grundstücks zu einem Gebiet nach Absatz 1 besteht nicht."

und

§ 27 Rechtswirkung der Entscheidung

- (1) [...]
- (2) Die Entscheidung über die Ausweisung eines Gebiets als Gebiet zum Neu- oder Ausbau von Wärmenetzen oder als Wasserstoffnetzausbaugebiet bewirkt keine Pflicht, eine bestimmte Wärmeversorgungsart tatsächlich zu nutzen oder eine bestimmte Wärmeversorgungsinfrastruktur zu errichten, auszubauen oder zu betreiben.
- (3) Entscheidungen über die Ausweisung als Gebiet zum Neu- oder Ausbau von Wärmenetzen oder als Wasserstoffnetzausbaugebiet sind zu berücksichtigen in Abwägungs- und Ermessensentscheidungen bei 1. einer Aufstellung, Änderung, Ergänzung oder Aufhebung eines Bauleitplans und 2. einer anderen flächenbedeutsamen Planung oder Maßnahme einer öffentlichen Stelle oder von einer Person des Privatrechts in Wahrnehmung öffentlicher Aufgaben.

2.3 Was kann man von der kommunalen Wärmeplanung erwarten?

Die kommunale Wärmeplanung stellt wie im vorherigen Abschnitt dargelegt zunächst eine unverbindliche Planung für die klimaneutrale Wärmeversorgung dar. Dies wirkt auf den ersten Blick so als ob dies wenig unmittelbar hilft, jedoch ist es der erste Schritt, welcher eigentlich schon lange überfällig ist. Wir möchten hier vorweg zum Bericht die wichtigsten Punkte festhalten, welche insbesondere aus Sicht der Bürger zu erwarten ist:

- 1) Gewissheit: Eine Gewissheit, ob Wärmenetze gebaut werden, liegt nach der kommunalen Wärmeplanung noch nicht vor! Es wird lediglich empfohlen in den potenziellen Wärmenetzeignungsgebieten weiterführende Machbarkeitsstudien durchzuführen. Diese werden dann weiterführende Erkenntnisse über die Machbarkeit und Wirtschaftlichkeit liefern. Wodurch danach zusammen mit der Bereitschaft der anzuschließenden Kunden eine Entscheidung über den Bau des Wärmenetz gefällt werden wird.
- 2) Heizungsentscheidung: Falls eine Entscheidung über eine neue Heizungsanlage ansteht, kann die kommunale Wärmeplanung helfen, aber keinen abschließenden Rat geben. Dazu empfehlen wir Kontakt zu zertifizierten Energieberatern (z.B. unter https://www.energie-effizienz-experten.de/) aufzunehmen. Hier jedoch einige Tendenzen, die sich aus der Wärmeplanung ergeben:
 - a. Wenn Sie in einem Wärmenetzeignungsgebiet liegen und
 - i. ihre Heizung kurzfristig (< 3 Jahre) <u>noch nicht</u> ausgetauscht werden muss, könnten Sie zunächst die weiteren Machbarkeitsstudien abwarten.
 - ii. ihre Heizung kurzfristig ausgetauscht werden muss, sollten sie sich mit Übergangslösungen oder grundsätzlichen Alternativen beschäftigen.
 - b. Wenn Sie <u>nicht</u> in einem Wärmenetzeignungsgebiet liegen, sollten Sie sich mit dezentralen Alternativen wie Wärmepumpen, Biomasseanlagen oder Hybridheizungen beschäftigen. Je älter ihre Heizung ist, insbesondere wenn Sie > 20 Jahre alt ist, sollten Sie sich kurzfristig mit dem Heizungswechsel beschäftigen.

2.4 Methode und Konzept "digitaler Zwilling"

Die Abbildung 2 zeigt unser Konzept der Datenverwaltung innerhalb des Projekts. Beim Thema des "digitalen Zwillings" setzen wir nicht auf eine separate Software, welche wir vertreiben, sondern nutzen herkömmliche Geographische Informationssysteme (GIS). Unser Konzept kommt ohne Lizenzen

aus und zeichnet sich dadurch aus, dass man auch unabhängig von uns vollständig mit den Daten arbeiten kann.

Alle Daten und Visualisierungen (GIS-Layer) werden während und zum Ende des Projekts auf einen Datenserver abgelegt. Von diesem Server kann die Kommune und wenn gewünscht der Netzbetreiber auf alle bzw. ausgewählte Daten zugreifen. Dies gewährleistet eine vollständige Transparenz und Nachvollziehbarkeit. Zudem liegt die Datenhoheit bei der Kommune. Die GIS-Daten können aufgrund der standardisierten Formate leicht in die hauseigenen GIS-Systeme eingebunden werden. Dies vermeidet den Aufbau von Parallelsystemen. Ausgewählte Daten können dann den Bürgern über die Webseite der Kommune zur Verfügung gestellt werden.

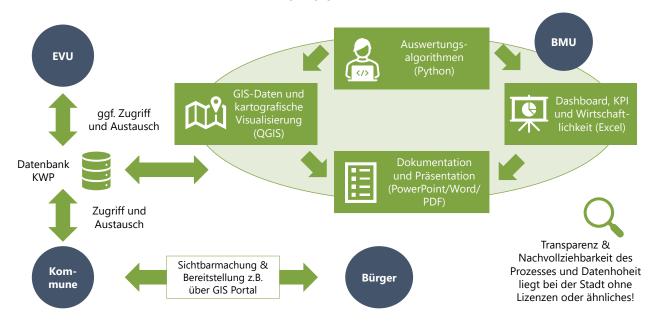


Abbildung 2: Methode der Untersuchung und Datenhaltung

2.5 Datenschutz

In dem Projekt zur kommunalen Wärmeplanung in der Verbandsgemeinde Ruwer stellte die planungsverantwortliche Stelle bei der Datenverarbeitung sicher, dass unmittelbar geltendes Recht der Europäischen Union sowie Rechtsvorschriften des Bundes oder der Länder hinsichtlich der Vertraulichkeit oder der Sicherheit der Daten sowie zum Schutz personenbezogener Daten beachtet wurden. Sie ergriff unter Berücksichtigung des Stands der Technik geeignete technische und organisatorische Maßnahmen zur Sicherstellung der Vertraulichkeit und der Sicherheit der Daten sowie zum Schutz personenbezogener Daten.

Die planungsverantwortliche Stelle stellte sicher, dass Veröffentlichungen, insbesondere eines Wärmeplans, keine personenbezogenen Daten, Betriebs- oder Geschäftsgeheimnisse oder vertraulichen Informationen zu kritischen Infrastrukturen enthalten. Sobald es im Hinblick auf die Aufgabenwahrnehmung möglich war, pseudonymisierte oder anonymisierte die planungsverantwortliche Stelle personenbezogene Daten, sofern der Zweck der Verarbeitung dies zuließ. Sobald personenbezogene Daten nicht mehr, auch nicht in pseudonymisierter Form, benötigt wurden, löschte sie diese unverzüglich.

2.6 Gesetzliche Anforderungen

2.6.1 Gebäudeenergiegesetz - GEG

Das GEG spielt eine zentrale Rolle in der kommunalen Wärmeplanung. Es bildet die gesetzliche Grundlage und definiert die energetischen Standards und Anforderungen, die bei der Planung und Umsetzung von Wärmeversorgungssystemen auf kommunaler Ebene zu beachten sind. Im Rahmen der kommunalen Wärmeplanung dient das Kapitel zu den allgemeinen Vorschriften als Basis für die rechtliche Einordnung und Anwendung des GEG. Die Begriffsbestimmungen und Anwendungsbereiche sind entscheidend für das Verständnis und die Umsetzung der gesetzlich geforderten Maßnahmen. Für die kommunale Wärmeplanung sind die Anforderungen an Neubauten relevant, da sie sicherstellen, dass diese energieeffizient geplant und gebaut werden.

Dies umfasst die Einhaltung bestimmter Standards für den Jahres-Primärenergiebedarf und den Wärmeschutz. Bei der Sanierung bestehender Gebäude müssen ebenfalls die Anforderungen des GEG berücksichtigt werden. Sie schreiben vor, dass bei Modernisierungsmaßnahmen energetische Verbesserungen durchgeführt werden müssen, wie die Dämmung von Wänden, Dächern und Decken sowie der Austausch ineffizienter Heizungsanlagen.

Ein weiterer wichtiger Aspekt des GEG ist die Nutzung erneuerbarer Energien. Neubauten müssen einen bestimmten Anteil ihres Energiebedarfs durch erneuerbare Energien decken, und auch bei Bestandsgebäuden soll die Integration solcher Technologien gefördert werden. Dies ist entscheidend für die kommunale Wärmeplanung, da die Nutzung erneuerbarer Energien zur Erreichung der Klimaziele beiträgt. Die Ausstellung, Verwendung und der Aushang von Energieausweisen informieren Eigentümer und Käufer über den energetischen Zustand von Gebäuden und unterstützen so die Transparenz und das Bewusstsein für Energieeffizienz. Dies ist relevant für die kommunale Wärmeplanung, da es eine Grundlage für die Bewertung und Optimierung der energetischen Qualität von Gebäuden bietet.

Die Pflichten der Länder und Kommunen umfassen die Umsetzung und Überwachung der Vorschriften des GEG. Dies bedeutet, dass die Verbandsgemeinde Ruwer für die Einhaltung der gesetzlichen Anforderungen sorgen und Maßnahmen zur Förderung der Energieeffizienz und der Nutzung erneuerbarer Energien unterstützen muss. Die Marktüberwachung und Sanktionierung bei Verstößen gegen das GEG sind ebenfalls zur Sicherstellung der Einhaltung gesetzlicher Vorgaben wichtige Maßnahmen. Besondere Anforderungen an bestimmte Gebäudetypen, wie Nichtwohngebäude oder öffentliche Gebäude müssen in der kommunalen Wärmeplanung berücksichtigt werden.

Dies betrifft auch die Planung und Umsetzung von Maßnahmen zur Energieeinsparung und Nutzung erneuerbarer Energien in solchen Gebäuden. Übergangs- und Schlussvorschriften regeln das Inkrafttreten des Gesetzes und den Übergang von alten zu neuen Regelungen. Dies ist wichtig für die Planungssicherheit und die Umsetzung der kommunalen Wärmeplanung. Insgesamt unterstützt das GEG die Ziele der kommunalen Wärmeplanung, den Energieverbrauch zu senken und den Einsatz erneuerbarer Energien zu fördern. Die gesetzlichen Vorgaben und Anforderungen des GEG bilden den Rahmen für die energetische Optimierung von Gebäuden und die nachhaltige Wärmeversorgung in der Verbandsgemeinde Ruwer.

Die wichtigsten Punkte des GEG gemäß der aktuellen Gesetzesfassung sind im Folgenden aufgeführt:

- Nutzungspflicht von 65 % erneuerbaren Energien zur Wärmebereitstellung § 71: Bei der Bereitstellung von Wärme muss ein Anteil von mindestens 65 % aus erneuerbaren Energien stammen. Diese Regelung zielt darauf ab, den Einsatz umweltfreundlicher und nachhaltiger Energieträger zu fördern und die Abhängigkeit von fossilen Brennstoffen zu reduzieren.
- Beratungspflicht bei Einbau fossiler Heizungsanlagen § 71 (11): Vor dem Einbau fossiler Heizungsanlagen besteht eine Beratungspflicht. Eigentümer müssen sich über Alternativen und die Vorteile erneuerbarer Energien informieren lassen, um fundierte Entscheidungen treffen zu können.
- Gebäudeautomation § 71a: Anforderungen an die Gebäudeautomation werden festgelegt, um den Energieverbrauch durch optimierte Steuerung und Regelung der Heizungs-, Lüftungs- und Klimaanlagen zu senken. Dies kann zur Erhöhung der Energieeffizienz und zur Einsparung von Energiekosten beitragen.
- Regelmäßige Überprüfung von Wärmepumpen § 60a: Wärmepumpen müssen regelmäßig überprüft werden, um ihre Effizienz und Funktionsfähigkeit sicherzustellen. Regelmäßige Wartungen tragen dazu bei, die Lebensdauer der Geräte zu verlängern und ihre Energieeffizienz zu erhalten.
- Regelmäßige Überprüfung älterer Heizungsanlagen § 60b: Ältere Heizungsanlagen müssen regelmäßig überprüft werden, um sicherzustellen, dass sie effizient und sicher betrieben werden können. Dies hilft, den Energieverbrauch zu minimieren und potenzielle Sicherheitsrisiken zu erkennen und zu beheben.
- Hydraulischer Abgleich und Heizungsoptimierung § 60c: Ein hydraulischer Abgleich und die Optimierung der Heizungsanlage sind erforderlich, um die Wärmeverteilung im Gebäude zu verbessern und den Energieverbrauch zu reduzieren. Dies trägt zur Steigerung der Energieeffizienz und zur Senkung der Betriebskosten bei.
- Erweiterung bestehender Nichtwohngebäude > 100% der Nutzfläche § 51: Wenn die Nutzfläche eines bestehenden Nichtwohngebäudes um mehr als 100 % erweitert wird, muss das Gebäude hinsichtlich der Energiebilanzierung wie ein Neubau behandelt werden. Dies bedeutet, dass die aktuellen energetischen Anforderungen für Neubauten erfüllt werden müssen.
- Energieausweis muss Art der erneuerbaren Energien ausweisen § 85: Der Energieausweis muss die Art der eingesetzten erneuerbaren Energien ausweisen. Diese Transparenz informiert potenzielle Käufer oder Mieter über die Energiequellen des Gebäudes und trägt zur Förderung erneuerbarer Energien bei.
- Verlängerung der Nutzungsdauer für Gebäude zur Unterbringung geflüchteter Menschen § 102 (4) Befreiungen: Für Gebäude, die zur Unterbringung von geflüchteten Menschen genutzt werden, kann die Nutzungsdauer verlängert werden. Dies ermöglicht es, diese Gebäude länger zu nutzen, ohne sofortige umfassende energetische Sanierungen durchführen zu müssen. [2]

Die Entwicklung der Energieeinspar- und Klimaschutzgesetze in Deutschland umfasst bedeutende gesetzliche Meilensteine von den 1970er Jahren bis heute. Im Folgenden wird ein historischer Überblick über das Energieeinsparrecht in Deutschland präsentiert, einschließlich der wesentlichen Entwicklungen und Meilensteine der gesetzlichen Regelungen zur Energieeinsparung und zum Klimaschutz im Gebäudebereich. Ergänzend wird dieser Überblick auch in Abbildung 3 anschaulich dargestellt.

1970er bis 1990er Jahre:

 EnEG 1976 (Energieeinspargesetz): Einführung des Energieeinspargesetzes als erstes umfassendes Regelwerk zur Energieeinsparung in Gebäuden.

- WärmeschutzV 1977 (Wärmeschutzverordnung): Einführung der ersten Wärmeschutzverordnung, die Mindestanforderungen an den Wärmeschutz von Gebäuden festlegte.
- WärmeschutzV 1984 und 1995: Weitere Verschärfungen der Wärmeschutzverordnung zur Reduzierung des Energieverbrauchs.

2000er Jahre:

- EPBD 2002 (EU-Gebäuderichtlinie): Einführung der europäischen Gebäuderichtlinie, die alle EU-Mitgliedstaaten dazu verpflichtet, Maßnahmen zur Energieeffizienz in Gebäuden zu ergreifen.
- EnEV 2002 (Energieeinsparverordnung): Ablösung der Wärmeschutzverordnung durch die Energieeinsparverordnung, die umfassendere Anforderungen an die Energieeffizienz von Neubauten und Bestandsgebäuden stellte.
- EnEV 2004 und 2007: Weitere Verschärfungen der Energieeinsparverordnung und Einführung des Energieausweises für Bestandsgebäude.
- EnEG 2005 und 2009: Anpassungen des Energieeinspargesetzes.
- EEWärmeG 2009: Einführung des Erneuerbare-Energien-Wärmegesetzes zur Förderung der Nutzung erneuerbarer Energien im Wärmebereich.

2010er Jahre:

- EPBD 2010 und 2018: Aktualisierungen der EU-Gebäuderichtlinie.
- EnEG 2013: Weitere Anpassungen des Energieeinspargesetzes.
- EnEV 2014: Weitere Verschärfung der Energieeinsparverordnung.
- Klimaschutzgesetz 2019: Einführung des Bundes-Klimaschutzgesetzes zur verbindlichen Festlegung von Klimazielen.

2020er Jahre:

- Koalitionsvertrag 2021: Vereinbarungen zur F\u00f6rderung der Energieeffizienz und zum Klimaschutz
- Klimaschutzgesetz 2021: Weitere Anpassungen des Klimaschutzgesetzes.
- BEHG 2023 (Brennstoffemissionshandelsgesetz): Einführung des Brennstoffemissionshandelsgesetzes zur Bepreisung von CO₂-Emissionen.
- GEG 2020 und 2023 (Gebäudeenergiegesetz): Einführung des Gebäudeenergiegesetzes, das EnEG, EnEV und EEWärmeG zusammenfasst und den Primärenergiebedarf weiter reduziert.
- CO₂KostAufG 2023 (Kohlendioxidkostenaufteilungsgesetz): Gesetz zur Aufteilung der CO₂-Kosten zwischen Vermieter und Mieter.
- GEG 2024: Anhebung der Nutzungspflicht erneuerbarer Energien auf 65 %.

Ziel:

Das langfristige Ziel ist ein klimaneutraler Gebäudebestand bis 2045.

Energieeinsparrecht in Deutschland

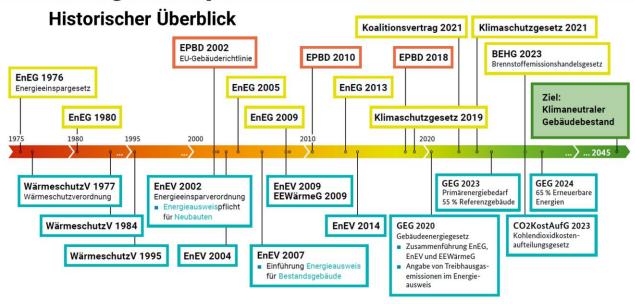


Abbildung 3: Energiesparrecht in Deutschland – Historischer Überblick [3]

Um die Nutzungspflicht von 65 % erneuerbarer Energien zu erfüllen, stehen verschiedene Heizsysteme zur Verfügung, die unterschiedliche Ansätze zur Wärmebereitstellung bieten. Im Folgenden werden Heiztechnologien vorgestellt, die durch den Einsatz erneuerbarer Energiequellen oder deren Kombinationen dazu beitragen können, die festgelegten Anforderungen zu erfüllen:

- Wärmenetz: Ein zentralisiertes Heizsystem, das Wärme aus erneuerbaren Energiequellen oder Abwärme über ein Netzwerk von isolierten Rohren an mehrere Gebäude liefert.
- Wärmepumpe: Eine Heizung, die Umweltwärme (aus Luft, Wasser oder Erde) aufnimmt und mittels elektrischer Energie in nutzbare Wärme umwandelt. Wärmepumpen sind sehr effizient und können mit erneuerbarem Strom betrieben werden.
- Stromdirektheizung: Heizsysteme, die elektrische Energie direkt in Wärme umwandeln. Wenn der Strom aus erneuerbaren Quellen stammt, kann diese Technologie die Anforderungen erfüllen.
- Solarthermische Heizung: Nutzt Sonnenkollektoren, um Sonnenenergie in Wärme umzuwandeln.
 Diese Wärme kann direkt für Heizung und Warmwasser genutzt werden.
- Flüssige oder gasförmige Biomasse: Heizsysteme, die flüssige oder gasförmige Biomasse (wie Biogas oder Bioöl) verbrennen, um Wärme zu erzeugen. Diese Brennstoffe stammen aus erneuerbaren Quellen.
- Wasserstoff-Heizung: Heizsysteme, die Wasserstoff verbrennen. Wenn der Wasserstoff aus erneuerbaren Energiequellen gewonnen wird (grüner Wasserstoff), trägt dies zur Erfüllung der Anforderungen bei.
- Feste Biomasse: Heizsysteme, die feste Biomasse (wie Holzpellets oder Hackschnitzel) verbrennen. Diese Materialien stammen aus erneuerbaren Quellen und können nachhaltig produziert werden.
- Wärmepumpen-Hybridheizung: Eine Kombination aus einer Wärmepumpe und einem zusätzlichen Heizsystem (z.B. Gas- oder Ölkessel) zur Deckung des Spitzenbedarfs. Der überwiegende Teil der Wärme wird durch die Wärmepumpe bereitgestellt.

 Solarthermie-Hybridheizung: Eine Kombination aus solarthermischer Heizung und einem zusätzlichen Heizsystem. Die Sonnenenergie deckt einen großen Teil des Wärmebedarfs, während das zusätzliche System bei Bedarf einspringt.

2.6.2 Wärmeplanungsgesetz - WPG

Das WPG ist eine wichtige gesetzliche Grundlage in Deutschland, die die kommunale Wärmeplanung und -strategie regelt. Ziel des Gesetzes ist es, bis spätestens 2045 eine kosteneffiziente, nachhaltige, sparsame, bezahlbare, resiliente und treibhausgasneutrale Wärmeversorgung zu erreichen und Endenergieeinsparungen zu erzielen. §1 betont die Umstellung auf erneuerbare Energien oder Abwärme bis 2045 und ermöglicht den Ländern, ein früheres Zieljahr festzulegen. §2 legt Ziele für die leitungsgebundene Wärmeversorgung fest, einschließlich eines Anteils von 50 Prozent erneuerbarer Energien ab 2030, den Ausbau von Wärmenetzen und die vorrangige Berücksichtigung erneuerbarer Energien in Schutzgüterabwägungen bis 2040. Die Bundesregierung soll bis Ende 2030 über die Anwendung dieser Regelung berichten und bei Bedarf gesetzgeberische Maßnahmen vorschlagen.

Das WPG legt die Verpflichtung zur Erstellung von Wärmeplänen gemäß §4 fest. Diese Verpflichtung betrifft Gemeindegebiete, wobei unterschiedliche Zeitrahmen je nach Einwohnerzahl gelten. Für Gemeinden mit über 100.000 Einwohnern (Stand: 1. Januar 2024) muss der Wärmeplan bis zum 30. Juni 2026 erstellt werden, während für Gemeinden mit 100.000 Einwohnern oder weniger (Stand: 1. Januar 2024) die Frist bis zum 30. Juni 2028 reicht. Gemeindegebiete mit weniger als 10.000 Einwohnern können ein vereinfachtes Verfahren durch gemeinsame Wärmeplanung nutzen. Liegenschaften des Bundes für Landes- oder Bündnisverteidigung sind von der Wärmeplanung ausgenommen, es sei denn, das Bundesministerium der Verteidigung stimmt dem Unterfangen zu. Bereits beplante Gebiete müssen keine erneute Durchführung vornehmen, wenn entweder ein Wärmeplan gemäß Landesrecht vor den Umsetzungsfristen erstellt und veröffentlicht wurde oder ein Beschluss zur Durchführung bis zum 1. Januar 2024 vorliegt und der Plan bis zum 30. Juni 2026 erstellt und veröffentlicht wurde und im Wesentlichen den Anforderungen des Gesetzes entspricht.

Gemäß §6 ist die planungsverantwortliche Stelle für die Wärmeplanung im beplanten Gebiet verantwortlich und kann Dritte beauftragen, um sie bei der Erfüllung dieser Aufgabe zu unterstützen. Im Rahmen der Wärmeplanung müssen (gemäß §7) verschiedene Parteien beteiligt werden, darunter die Öffentlichkeit, Behörden, Energieversorgungs- und Wärmenetz-Betreiber, zukünftige Betreiber, die betroffene Gemeinde oder Gemeindeverband, sowie das Bundesministerium der Verteidigung und Behörden für Liegenschaften der verbündeten Streitkräfte gemäß Abkommen. Weitere Parteien können auf Anfrage der planungsverantwortlichen Stelle beteiligt werden, wenn ihre Interessen berührt werden oder ihre Beteiligung Vorteile bzw. einen Mehrwert bietet. Die beteiligten Parteien müssen allerdings sicherstellen, dass ihre Mitwirkungshandlungen nicht gegen Wettbewerbsbeschränkungen verstoßen. Bei der Wärmeplanung für deutsche Grenzgebiete können auch informell die zuständigen Hoheitsträger oder andere Betroffene jenseits der Bundesgrenze beteiligt werden.

Im Rahmen der Mitwirkung teilen bestimmte Beteiligte gemäß §8 ihre Planungen über den Aus- oder Umbau von Strom-, Gas- oder Wärmenetzinfrastruktur im beplanten Gebiet mit der planungsverantwortlichen Stelle. Diese Beteiligten müssen bei ihren Aus- oder Umbauplanungen die Darstellungen des Wärmeplans berücksichtigen. Die planungsverantwortliche Stelle hat die Wärmeplanung gemäß §9 so auszurichten, dass sie die nationalen Ziele des Bundes-Klimaschutzgesetzes berücksichtigt. Dabei sind vorliegende Planungen, Transformationspläne, Machbarkeitsstudien, Wärmenetzausbau-

und -dekarbonisierungsfahrpläne, allgemeine physikalische, technische und energiewirtschaftliche Grundsätze sowie wissenschaftlich fundierte Annahmen mit einzubeziehen.

Die planungsverantwortliche Stelle hat außerdem das Recht, Daten in schriftlicher und elektronischer Form zu verarbeiten, um ihre Aufgaben zu erfüllen. Die Verarbeitung von Endenergieverbräuchen von Gas oder Wärme ist jedoch nur aggregiert für mindestens fünf benachbarte Hausnummern erlaubt. Daten, die für die Wärmeplanung benötigt werden, können von Statistikämtern und anderen öffentlichen Datenbanken erhoben werden, sofern keine gesetzlichen Bestimmungen dagegensprechen.

Die Verarbeitung von Daten zu anderen Zwecken als den ursprünglich erhobenen ist zulässig, wenn es sich nicht um personenbezogene Daten handelt und dies im öffentlichen Interesse liegt, beispielsweise für städtebauliche Förderungskonzepte. Behörden des Bundes oder der Länder sowie Betreiber von Energieversorgungsnetzen und anderen Einrichtungen sind zur Auskunft für Erhebungen verpflichtet. Die planungsverantwortliche Stelle kann angemessene Fristen zur Datenübermittlung setzen und Maßnahmen zur Einhaltung der Auskunftspflicht anordnen, wenn ein Auskunftspflichtiger seinen Verpflichtungen nicht nachkommt.

Es ist jedoch von großer Wichtigkeit, dass die planungsverantwortliche Stelle bei der Datenverarbeitung geltende EU-Rechtsakte sowie nationale Rechtsvorschriften zur Vertraulichkeit, Sicherheit und Datenschutz beachten muss. Es müssen angemessene technische und organisatorische Maßnahmen ergriffen werden um die Vertraulichkeit und Sicherheit der Daten sowie den Datenschutz zu gewährleisten. Veröffentlichungen von Wärmeplänen dürfen keine personenbezogenen Daten, Betriebsoder Geschäftsgeheimnisse enthalten und Daten, die die Bundeswehr oder verbündete Streitkräfte betreffen, dürfen nicht ohne Zustimmung der entsprechenden Behörde veröffentlicht werden. Personenbezogene Daten sollen, wenn möglich, pseudonymisiert/anonymisiert werden. Werden personenbezogene Daten nicht mehr benötigt, müssen sie sofort gelöscht werden. Es besteht zwar keine Pflicht zur Information der betroffenen Personen gemäß der Datenschutz-Grundverordnung, aber die planungsverantwortliche Stelle muss die Information ortüblich bekannt machen.

Die Wärmeplanung selbst beinhaltet viele verschiedene Schritte. Diese umfassen den Beschluss oder die Entscheidung zur Durchführung der Wärmeplanung, Eignungsprüfungen, Bestands- und Potenzialanalysen sowie die Entwicklung eines Zielszenarios und einer Umsetzungsstrategie. Die Öffentlichkeit wird über den Beschluss informiert, und die Ergebnisse der Eignungsprüfung werden veröffentlicht. Nach Durchführung dieser Schritte erstellt die planungsverantwortliche Stelle einen Entwurf für das Zielszenario, die Einteilung des Gebiets in Wärmeversorgungsgebiete und die optimale Umsetzungsstrategie. Die Öffentlichkeit, Behörden und andere Beteiligte haben die Möglichkeit zur Einsicht- und Stellungnahme.

Die Eignungsprüfung untersucht die Eignung des Gebiets für Wärme- oder Wasserstoffnetze. Gebiete, die sich nicht für solche Netze eignen, unterliegen einer verkürzten Wärmeplanung. Die Fortschreibung des Wärmeplans erfolgt alle fünf Jahre für ungeeignete Gebiete, um Änderungen in der Eignung zu berücksichtigen bzw. erneut zu überprüfen. Die Bestandsanalyse ermittelt den aktuellen Wärmebedarf, die genutzten Energieträger und die vorhandenen Wärmeerzeugungsanlagen im Gebiet. Die Potenzialanalyse quantifiziert Potenziale zur Wärmeerzeugung aus erneuerbaren Energien und zur Energieeinsparung.

Das Zielszenario beschreibt die langfristige Entwicklung der Wärmeversorgung basierend auf den Ergebnissen der Analysen und unter Beteiligung der betroffenen Akteure. Die Einteilung des Gebiets in Wärmeversorgungsgebiete und die Darstellung der Wärmeversorgungsarten werden ebenfalls berücksichtigt. Die planungsverantwortliche Stelle kann Maßnahmen zur Umsetzung identifizieren und realisieren.

Für Gemeindegebiete mit mehr als 45.000 Einwohnern müssen Wärmepläne zusätzliche Anforderungen erfüllen, wie die Einhaltung des Grundsatzes der Energieeffizienz und die Analyse von Finanzierungsmöglichkeiten. Ein vereinfachtes Verfahren für die Wärmeplanung reduziert den Beteiligtenkreis und ermöglicht den Ausschluss eines Wasserstoffnetzes für Teilgebiete unter bestimmten Bedingungen.

Der Wärmeplan enthält zudem eine Zusammenfassung der wesentlichen Ergebnisse der durchgeführten Wärmeplanung sowie eine Dokumentation des Fertigstellungszeitpunkts. Die wesentlichen Bestandteile des Wärmeplans umfassen die Ergebnisse der Eignungsprüfung, Bestands- und Potenzialanalysen, das Zielszenario, die Einteilung in Wärmeversorgungsgebiete, die Darstellung der Wärmeversorgungsart für das Zieljahr und die Umsetzungsmaßnahmen. Der Wärmeplan wird durch das zuständige Gremium oder die zuständige Stelle beschlossen und im Internet veröffentlicht. Es ist jedoch zu beachten, dass der Wärmeplan keine rechtliche Außenwirkung hat und keine einklagbaren Rechte oder Pflichten begründet.

Gemäß §24 kann durch Landesrecht bestimmt werden, dass die planungsverantwortliche Stelle den Wärmeplan einer durch Landesrecht bestimmten Stelle anzeigen muss.

Die Fortschreibung des Wärmeplans gemäß §25 erfolgt alle fünf Jahre durch die planungsverantwortliche Stelle. Dabei werden die ermittelten Strategien und Maßnahmen zur Wärmeversorgung überprüft und bei Bedarf überarbeitet und aktualisiert. Die Entwicklung der Wärmeversorgung bis zum Zieljahr für das gesamte beplante Gebiet wird im Zuge der Fortschreibung aufgezeigt. Prüfgebiete können bis zum Zieljahr als voraussichtliche Wärmeversorgungsgebiete dargestellt werden, wenn eine andere Art der Wärmeversorgung geplant ist. Die Bestimmungen des Gesetzes gelten auch für die Fortschreibung bestehender Wärmepläne nach §5, wobei ab dem 1. Juli 2030 die Vorgaben dieses Gesetzes zu berücksichtigen sind, sofern keine Maßnahmen oder Projekte bereits vor dem 1. Januar 2024 begonnen wurden.

Die planungsverantwortliche Stelle oder eine andere durch Landesrecht bestimmte Stelle ist in der Lage, unter Berücksichtigung der Ergebnisse der Wärmeplanung eine Entscheidung über die Ausweisung eines Gebiets zum Neu- oder Ausbau von Wärmenetzen oder als Wasserstoffnetzausbaugebiet zu treffen. Diese Entscheidung erfolgt grundstücksbezogen, und es besteht kein Anspruch auf die Einteilung eines bestimmten Grundstücks zu einem solchen Gebiet. Die Durchführung einer strategischen Umweltprüfung gemäß den Vorschriften des Gesetzes über die Umweltverträglichkeitsprüfung bleibt unberührt, und im Falle eines bestehenden Wärmeplans sind die Ergebnisse dieses Plans zu berücksichtigen. Die Entscheidung hat keine rechtliche Außenwirkung bezüglich der tatsächlichen Nutzung einer bestimmten Wärmeversorgungsart oder -infrastruktur.

Die Entscheidung gemäß §27 entspricht einer Entscheidung nach dem Gebäudeenergiegesetz und verpflichtet nicht zur Nutzung einer spezifischen Wärmeversorgungsart oder Infrastruktur. Entscheidungen über die Ausweisung solcher Gebiete sind in Aufstellungs-, Änderungs- oder

Aufhebungsprozessen von Bauleitplänen und anderen flächenbedeutsamen Planungen oder Maßnahmen zu berücksichtigen. Die planungsrechtliche Zulässigkeit und Genehmigung von Vorhaben zur Umsetzung der Wärmeplanung und der Entscheidung gemäß §26 richten sich nach den geltenden rechtlichen Grundlagen.

In Bezug auf die Transformation von Gasverteilernetzen kann die planungsverantwortliche Stelle im Wärmeplan darstellen, welche Grundstücke an einem bestehenden oder geplanten Gasverteilernetz liegen, um Gebäudeeigentümer zu informieren, die eine Heizungsanlage mit grünem Methan betreiben oder betreiben wollen. Die Eignung für eine Versorgung mit grünem Methan im Zieljahr wird für jedes beplante Teilgebiet, das als Prüfgebiet ausgewiesen ist und ein Gasverteilernetz hat oder plant, bestimmt und entsprechend dargestellt. Der Betreiber eines bestehenden Gasverteilernetzes muss der planungsverantwortlichen Stelle unaufgefordert mitteilen, wenn er sein Netz vom vorgelagerten Netz entkoppelt oder die Gasversorgung einschränkt oder einstellt. Diese Informationen werden im Rahmen der Wärmeplanung berücksichtigt, und der erwartete Bedarf an grünem Methan für das Zieljahr wird an die zuständige Stelle nach Landesrecht gemeldet.

Gemäß Teil 3 des Gesetzes sind Betreiber von Wärmenetzen verpflichtet, einen bestimmten Anteil erneuerbarer Energien in ihren Netzen zu gewährleisten. Ab dem 1. Januar 2030 muss mindestens 30% der jährlichen Nettowärmeerzeugung aus erneuerbaren Energien stammen, bis zum 1. Januar 2040 erhöht sich dieser Anteil auf mindestens 80 %. Unter besonderen Umständen können Fristverlängerungen bis zum 31. Dezember 2034 oder 2044 gewährt werden. Es gibt Ausnahmen für komplexe Maßnahmen sowie für Wärmenetze, die vorrangig gewerbliche oder industrielle Verbraucher mit Prozesswärme versorgen, und zusätzliche Regelungen für Wärmenetze mit hohem Anteil an Nutzwärme aus geförderten KWK-Anlagen. Betreiber müssen die Erfüllung dieser Vorgaben gegenüber der zuständigen Behörde bestätigen, und Kunden haben das Recht, Nachweise oder Befreiungen zu verlangen und sich bei Nichterfüllung abzukoppeln. Landesrecht kann strengere Anforderungen festlegen.

Für neue Wärmenetze ab dem 1. März 2025 gilt eine Mindestanforderung von 65 % erneuerbaren Energien an der jährlichen Nettowärmeerzeugung. Ab dem 1. Januar 2024 wird der Biomasseanteil in neuen Wärmenetzen über 50 Kilometer Länge auf maximal 25 % begrenzt, mit Ausnahme von Wärme aus thermischer Abfallbehandlung. Bestehende Anlagen, die Biomasse-Wärme in ein Wärmenetz einspeisen, die bis zum 1. Januar 2024 genehmigt wurden, werden bei der Biomasseanteilsbestimmung nicht berücksichtigt.

Des Weiteren müssen alle Wärmenetze bis zum 31. Dezember 2044 vollständig mit Wärme aus erneuerbaren Energien, unvermeidbarer Abwärme oder einer Kombination betrieben werden, um bis zum 1. Januar 2045 klimaneutral zu sein. Der Biomasseanteil in Wärmenetzen über 50 Kilometer Länge wird ab dem 1. Januar 2045 auf maximal 15 % begrenzt.

Betreiber von nicht vollständig dekarbonisierten Wärmenetzen müssen bis zum 31. Dezember 2026 Ausbau- und Dekarbonisierungsfahrpläne erstellen und ebenfalls alle fünf Jahre überprüfen und aktualisieren. Es gibt Ausnahmen für bestimmte Betreiber und Wärmenetze in Bezug auf die Länge und den Anteil erneuerbarer Wärme. Die Fahrpläne müssen den bestehenden oder geplanten Wärmeplan berücksichtigen.

Gemäß den Schlussbestimmungen werden verschiedene Verordnungsermächtigungen den Landesregierungen übertragen. Diese umfassen die Möglichkeit, Pflichten und Aufgaben auf Gemeinden oder andere Rechtsträger zu übertragen und als planungsverantwortliche Stellen zu bestimmen, sowie die Befugnis, Stellen für Entscheidungen gemäß § 26 Absatz 1 und Überprüfungen gemäß § 28 (Absatz 5) zu bestimmen. Auch das vereinfachte Verfahren gemäß § 22 kann durch Rechtsverordnung näher ausgestaltet werden. Darüber hinaus können die Landesregierungen ein Anzeigeverfahren gemäß § 24 einführen, die zuständige Behörde bestimmen und das Verfahren zur Bewertung nach § 21 Nummer 5 regeln. Zudem können sie die Behörde bestimmen, die für die Überwachung der Pflichten gemäß Teil 3 des Gesetzes zuständig ist.

Des Weiteren sieht das Gesetz vor, dass das Bundesministerium für Wirtschaft und Klimaschutz erstellte Wärmepläne auf einer zentralen Internetseite veröffentlicht. Diese Veröffentlichung erfolgt erstmals sechs Monate nach Ablauf der Fristen in § 4 (Absatz 2). Die Internetseite zeigt den bundesweiten Anteil der Nettowärmeerzeugung in Wärmenetzen aus erneuerbaren Energien für die Jahre 2030, 2040 und den Stichtag 1. Januar 2045. Die Länder müssen dem Bundesministerium für Wirtschaft und Klimaschutz auf Anforderung die erforderlichen Informationen mitteilen.

Eine Evaluation der Wirkung der Wärmeplanungsregelungen und der Zielerreichung gemäß verschiedenen Absätzen des Gesetzes ist auch vorgesehen. Die Bundesregierung führt die Evaluierung durch und überprüft verschiedene Aspekte, darunter die Wärmeplanerstellung, die Anzahl der erstellten Wärmepläne, Entscheidungen gemäß § 26 Absatz 1, die Gewährleistung der Zielerreichung gemäß §2 (Absatz 1) und §29 (Absatz 1), die Notwendigkeit und Umfang der Biomassebegrenzung in neuen Wärmenetzen und die Verfügbarkeit von grünem Wasserstoff. Die Evaluierung erfolgt zu verschiedenen Zeitpunkten bis zum Jahr 2045, um sicherzustellen, dass die Ziele des Gesetzes erreicht werden. [1]

2.7 Energiebedarf in Deutschland

Der Energiebedarf in Deutschland lässt sich in die Sektoren Haushalte, Gewerbe-Handel-Dienstleistungen (GHD), Verkehr und Industrie unterteilen. Innerhalb dieser Sektoren kann der Energiebedarf weiter in Nutzenergieformen und Energieträger differenziert werden. Der Energiebedarf in den verschiedenen Sektoren sowie die Aufteilung nach Energieträgern und Verwendung wird in Abbildung 4 dargestellt. Es lassen sich folgende Erkenntnisse zusammenfassen:

- Haushalte, Verkehr und Industrie haben mit jeweils ca. 650 TWh einen ähnlichen Energiebedarf, während der GHD-Sektor mit ca. 360 TWh etwa 45 % weniger Energie benötigt.
- In den Haushalten ist der Bedarf an Raumwärme besonders hoch, was auch im GHD-Sektor ähnlich ist.
- In der Industrie dominiert die Prozesswärme, während im Verkehrssektor die mechanische Energie im Vordergrund steht.
- Im Wärmebereich ist Erdgas der vorherrschende Energieträger. Strom bzw. elektrische Energie fungiert als eine Art Universalenergieträger, der in fast allen Bereichen genutzt wird.

Die aktuellen Daten zeigen Trends, die Rückschlüsse auf die zukünftige Entwicklung des Energiebedarfs und der Energienutzung zulassen. Durch die Elektrifizierung werden Bereiche wie die Raumwärmebereitstellung, beispielsweise mittels Wärmepumpen, und die Mobilität durch Elektrofahrzeuge deutlich effizienter. Allerdings stellt die Ablösung von Gas- und Ölheizungen durch

klimaneutrale Technologien eine enorme Herausforderung dar. Der Technologiewechsel in der Heizungsbranche hängt stark von der Netzebene ab und hat massive Auswirkungen auf alle Netzinfrastrukturen. Derzeit wird der Großteil der Gebäude über das Erdgasnetz versorgt, ergänzt durch nicht leitungsgebundene Technologien wie Ölheizungen. In Zukunft wird es entscheidend sein, welche Netzinfrastrukturen in welchem Umfang genutzt werden. Die folgenden Punkte fassen die erwarteten Veränderungen zusammen:

- Das Stromnetz wird stark an Wichtigkeit gewinnen.
- Fern- und Nahwärmenetze werden ausgebaut.
- Nicht leitungsgebundene Heizungssysteme, insbesondere Ölheizungen, werden gezwungen sein, auf strom-, gas- oder wärmenetzgekoppelte Systeme umzusteigen.
- Das Erdgasnetz wird stark an Wichtigkeit verlieren und Wasserstoffnetze werden Erdgasnetze teilweise ablösen

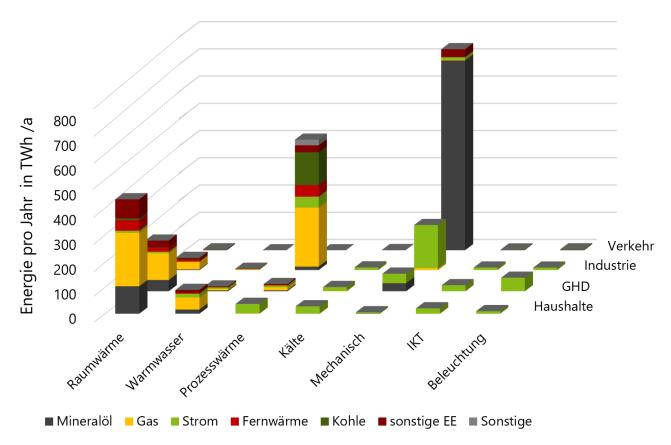


Abbildung 4: Energiebedarf in Deutschland in den Sektoren Haushalte, Gewerbe-Handel-Dienstleistungen, Verkehr und Industrie aufgeteilt nach Energieträgern und Verwendung [4]

2.8 Detaillierte Analyse des Wärmbedarfes

2.8.1 Raumwärmebedarf

2.8.1.1 Gebäudetypen und -alter

Die Bauentwicklung in Deutschland hat über die Jahrzehnte hinweg erhebliche Veränderungen und Fortschritte erlebt. Von handwerklich geprägten Techniken in der vorindustriellen Phase bis hin zu

modernen energieeffizienten Gebäuden spiegeln die Bauweisen und Normen den technischen Fortschritt und die gesellschaftlichen Bedürfnisse wider. Insbesondere der Wärmeschutz hat in den letzten 100 Jahren zunehmend an Bedeutung gewonnen, nicht zuletzt durch ökologische und ökonomische Anforderungen. Die folgenden Abschnitte geben einen Überblick über die unterschiedlichen Bauphasen und die Entwicklungen im Bereich des Wärmeschutzes, die maßgeblich zur heutigen Baupraxis beigetragen haben. Diese Informationen sind auch in Tabelle 1 zusammengefasst und veranschaulicht.

Vorindustrielle Phase (<1919): Die Zeit vor 1919 ist geprägt von handwerklich geprägten Bautechniken, die auf traditionellen Erfahrungen basieren. Es gab kaum gesetzliche Regelungen, und die Bauweisen waren stark von regionalen Traditionen beeinflusst. Ein typisches Beispiel aus dieser Zeit sind Fachwerkhäuser mit Strohlehm-Ausfachung. In der Gründerzeit erlebten die Städte eine deutliche Ausdehnung und die beginnende Industrialisierung führte zur ersten Standardisierung und Normung der Bauweisen.

Zunehmende Industrialisierung (1919 – 1948): Zwischen 1919 und 1948 nahm die Industrialisierung der Baustoffherstellung zu. Es wurden kostengünstige und einfache Materialien sowie materialsparende Konstruktionen verwendet. In dieser Zeit setzte sich die nationale Standardisierung und Normung durch. Ein- und zweischalige Mauerwerksbauten dominierten, oft mit massiven Kellerdecken. Der Wärmeschutz verbesserte sich etwas durch den verstärkten Einsatz von Bauelementen mit Luftkammern.

Nachkriegszeit und Entwicklung der Normen (1949 – 1979): In der Nachkriegszeit (1949 – 1979) war die Bauweise oft einfach und nutzte Trümmer-Materialien. Die Weiterentwicklung der Normen und die Einführung von Anforderungen für den sozialen Wohnungsbau waren charakteristisch für diese Phase. Die Einführung der DIN 4108 "Wärmeschutz im Hochbau" im Jahr 1952 markierte einen wichtigen Schritt zur Verbesserung des Wärmeschutzes in Gebäuden.

Reaktion auf die Ölkrise (1979 – 1986): Ausgelöst durch die erste Ölkrise erhielt der Wärmeschutz im Einfamilienhausbereich ab 1979 größere Bedeutung. Die erste Wärmeschutzverordnung (WSchV) wurde als direkte Folge der Ölkrise eingeführt. Auch in der DDR wurden die wärmetechnischen Anforderungen verbessert, bekannt als Rationalisierungsstufe 11, wobei monolithische Wände mit immer kleineren Luftkammern bzw. porosierten Materialien verwendet wurden.

Fortschritte im Wärmeschutz (1987 – 1995): Die zweite Wärmeschutzverordnung (WSchV 84) trat in Kraft, und auch in der DDR wurden die Wärmeschutzanforderungen weiter verbessert. In dieser Zeit kamen die ersten Niedrigenergiehäuser auf den Markt, teilweise gefördert durch regionale oder Landesprogramme.

Moderne Wärmeschutzverordnungen (1996 – heute): Ab 1996 wurde die dritte Wärmeschutzverordnung (WSchV 95) eingeführt. Ab 2001 trat die Energieeinsparverordnung (EnEV 2002) in Kraft, gefolgt von weiteren Anpassungen und der EnEV 2009 sowie den KfW-Effizienzhäusern. Diese Entwicklungen markierten bedeutende Fortschritte in der Energieeffizienz und im Wärmeschutz von Gebäuden, um den steigenden Anforderungen an Nachhaltigkeit und Klimaschutz gerecht zu werden.

Tabelle 1: Charakterisierung der Wohngebäude nach Baujahresklassen nach IWU [5]

Zeitraum	Charakterisierung			
<1919	Vorindustrielle Phase, handwerklich geprägte Bautechniken, aufbauend auf Erfahrungen, kaum gesetzliche Regelungen; Fachwerk mit Strohlehm-Ausfachung; Gründerzeit: Ausdehnung der Städte und einsetzende Industrialisierung, Standardisierung und Normung der Bauweisen;			
1919 – 1948	zunehmende Industrialisierung der Baustoffherstellung, Verwendung kostengünstiger und einfacher Materialien sowie materialsparender Konstruktionen, nationale Standardisierung und Normung Dominanz von ein- und zweischaligen Mauerwerksbauten, massive Kellerdecken, etwas verbesserter Wärmeschutz durch verstärkten Einsatz von Bauelementen mit Luftkammern			
1949 – 1979	einfache Bauweise der Nachkriegszeit, häufig mit Trümmer-Materialien, Weiterentwicklung der Normen, Einführung von Anforderungen für den sozialen Wohnungsbau, Einführung der DIN 4108 "Wärmeschutz in Hochbau" (1952)			
1979 – 1986	im Einfamilienhaus-Bereich ausgelöst durch 1. Ölkrise erhält der Wärmeschutz größere Bedeutung; 1. Wärmeschutzverordnung als Folge der Ölkrise; auch in der DDR verbesserte wärmetechnische Anforderungen (Rationalisierungsstufe 11) bei monolithischen Wänden immer kleinere Luftkammern bzw. porosierte Materialien			
1987 – 1995	2. Wärmeschutzverordnung (WSchV 84); in der DDR weiter verbesserter Wärmeschutz erste Niedrigenergiehäuser im Markt vertreten, teilweise gefördert durch regionale / Landespro- gramme			
1996 – 2004	3. Wärmeschutzverordnung (WSchV 95)			
> 2001	Energieeinsparverordnung EnEV 2002 und weitere EnEV 2009 und KFW-Effizienzhäuser			

2.8.1.2 Typische Heizwärmebedarfe

Tabelle 2: Typische Heizwärmebedarfe von Wohngebäuden

Baujahr der Ge- bäude	Heizwärme-be- darf in kWh/m²a	spez. Wärme- bedarf in W/m²	Wärmebedarf Wohnraum in W	notwendige Heizfläche ¹ in m²	notwendige Übertempe- ratur ² in K	mögliche Systemtem- peratur ² in °C
unsanier- ter Altbau	360440	180220	4.000	10	62,5	90/70
bis 1977	280360	140180	3.200	8	50	80/60
1977 - 1983	200260	100130	2.300	5,75	35,9	65/45
1984 - 1994	140180	7090	1.600	4	25	55/35
1995 - 2001	100120	5060	1.100	2,75	17,2	45/30
> 2002	7080	3540	800	2	12,5	38/28

¹ Beispiel für: Wohnraumgrundfläche 20 m², Wassertemperatur 80/60°C, Lufttemperatur 20°C, $\Delta t = 50$ K, k = 8 W/m² K (U-Wert), bei 2000 Heizstunden pro Jahr. $Q = k \times F \times \Delta t$ (Mittelwerte).

Tabelle 3: Heizlastdichte in W/m² für unterschiedliche Baujahre und Gebäudetypen [6]

Baujahr	bis 1958	1959-68	1969-73	1974-77	1978-83	1984-94	ab 1995
Gebäude	Päude Heizlastdichte in W/m²						
Einfamilien- haus freiste-							
hend	180	170	150	115	95	75	60
Reihenhaus- endhaus	160	150	130	110	160	90	55
Reihenhaus- mittelhaus	140	130	120	100	140	85	50
Mehrfamili- enhaus - bis 8 WE	130	120	110	75	65	60	45
Mehrfamili- enhaus -							
über 8 WE	120	110	100	70	60	55	40

² Übertemperatur und Systemtemperatur bei konstanter angenommener Heizfläche F = 8 m²

2.8.1.3 Trinkwarmwasseraufbereitung

Die Warmwasseraufbereitung ist neben der Raumwärme ein wesentlicher Bestandteil des Wärmebedarfs von Haushalten. Technisch kann diese entweder in Kombination mit dem Heizungssystem oder separat organisiert werden. Abbildung 5 zeigt, dass in Deutschland die kombinierte Bereitstellung von Heizung und Warmwasser dominiert. Über alle Gebäude hinweg beträgt der Anteil dieser kombinierten Systeme 77 %, und mit zunehmend jüngerem Baujahr steigt dieser Anteil auf 90 %. Daher wird davon ausgegangen, dass der Trend zur integrierten Warmwasseraufbereitung in modernen Gebäuden weiterhin zunehmen wird.

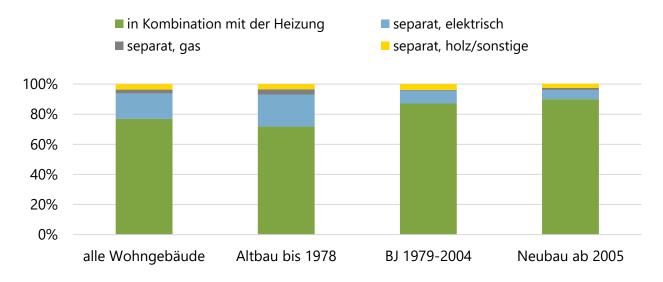


Abbildung 5: Trinkwassererhitzung nach Gebäudetyp [7]

2.8.1.4 Jahresdauerlinie Haushaltswärmebedarf

Die Jahresdauerlinie zeigt den Wärmeleistungsbedarf von Haushalten eines Jahres geordnet von den höchsten zu den niedrigsten Werten. Die Grundlast resultiert aus dem Trinkwarmwasserbedarf, welcher ganzjährig vorliegt. Die Raumwärme hingegen wird nur in der Heizperiode benötigt und hat ihren Hochpunkt an den kältesten Tagen des Jahres. In Abbildung 6 ist eine Jahresdauerlinie beispielhaft dargestellt.

Daraus lassen sich u.a. zwei wichtige Kenngrößen erkennen: Die Spitzenleistung und den Jahreswärmebedarf (Integral der Fläche). Mittels der Jahresdauerlinie können Wärmeerzeuger hinsichtlich ihrer Leistung ausgelegt werden. Dies ist insbesondere bei der Kombination mehrerer Erzeuger bspw. in einem Wärmenetz relevant. Wie in Abbildung 7 zu sehen, werden typischerweise insbesondere Blockheizkraftwerke (mit Kraft-Wärme-Kopplung) und Gasspitzenkessel kombiniert [8].

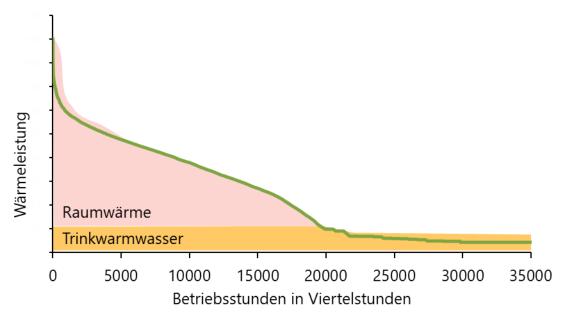


Abbildung 6: Jahresdauerlinie aufgeteilt nach Raumwärme und Trinkwarmwasser

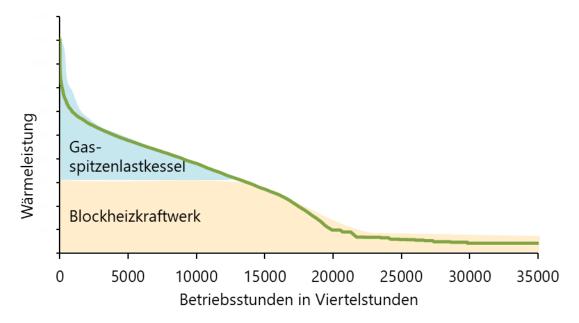


Abbildung 7: Jahresdauerlinie aufgeteilt nach Grundlast (BHKW) und Spitzenlast (Gas)

2.8.1.5 Status quo der Sanierung

Abbildung 8 veranschaulicht den prozentualen Anteil der der gedämmten Flächen von Außenwänden, Fußböden/Kellerdecken und Dächern in verschiedenen Wohngebäudetypen, unterteilt nach Baujahren. Bei allen Wohngebäuden beträgt der Anteil gedämmter Außenwände 36 %, der gedämmten Fußböden/Kellerdecken 34 % und der gedämmten Dächer 71 %.

In Altbauten mit Baujahr bis 1978 ist der Anteil deutlich niedriger: Nur 28 % der Außenwände, 20 % der Fußböden/Kellerdecken und 62 % der Dächer sind gedämmt. Für Gebäude mit Baujahren von 1979 bis 2004 sind die Dämmungsraten höher, wobei 50 % der Außenwände, 59 % der Fußböden/Kellerdecken und 89 % der Dächer gedämmt sind.

Die höchsten Dämmungsanteile finden sich in Neubauten ab 2005: 64 % der Außenwände, 85 % der Fußböden/Kellerdecken und 98 % der Dächer sind gedämmt. Bei den Außenwänden ist zu beachten, dass nur bestimmte Wärmedämmschichten als echte Dämmung gewertet werden. Gut gedämmte Mauersteine, die in dem verbleibenden Drittel der Gebäude wahrscheinlich vorherrschend sind, werden daher nicht explizit berücksichtigt. Dies zeigt, dass neuere Gebäude signifikant bessere Dämmstandards aufweisen, während ältere Gebäude vergleichsweise schlechter gedämmt sind. Der Trend geht eindeutig in Richtung umfassender Dämmung, insbesondere bei neu errichteten Gebäuden.

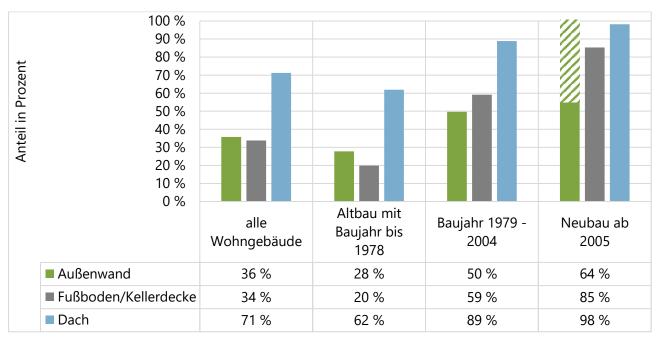


Abbildung 8: Prozentualer Anteil der gedämmten Flächen von Außenwänden, Fußböden, Kellerdecken und Dächern in verschiedenen Wohngebäudetypen, unterteilt nach Baujahren (Stand 2010) [7]

Die nachträgliche Dämmung von Bauteilflächen zeigt deutliche Unterschiede je nach Gebäudetyp und Baujahr. Abbildung 9 veranschaulicht, dass Außenwände, Fußböden/Kellerdecken und Dächer in vielen Bestandsgebäuden nachträglich gedämmt wurden, um den Wärmeschutz zu verbessern.

Besonders Altbauten von vor 1978, die nicht den heutigen energetischen Standards entsprechen, wurden durch nachträgliche Dämmmaßnahmen erheblich aufgewertet.

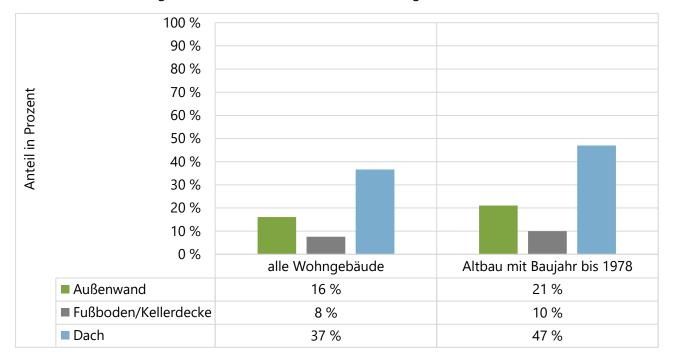


Abbildung 9: Nachträglich gedämmte Bauteilfläche von Außenwänden, Fußböden/Kellerdecken und Dächern (Stand 2010) [6]

2.8.2 Prozesswärmebedarf

Der Prozesswärmebedarf in der Industrie bezieht sich auf die Menge an Wärmeenergie, die benötigt wird, um spezifische Aufgaben in verschiedenen industriellen Prozessen auszuführen. Diese Wärmeenergie ist essenziell für eine Vielzahl von Anwendungen, die zur Herstellung von Produkten oder zur Durchführung bestimmter Verfahren benötigt werden.

Industrielle Prozesse variieren stark in ihren Anforderungen an Wärmeenergie. Beispielsweise benötigen manche Prozesse Wärme zum Schmelzen von Metallen oder Kunststoffen, während andere Wärme für chemische Reaktionen, Trocknungsverfahren, Dampferzeugung oder zur Aufrechterhaltung spezifischer Temperaturen in Produktionsanlagen benötigen. Das Temperaturniveau der benötigten Wärme kann ebenfalls stark variieren, abhängig von den spezifischen Anforderungen des Prozesses. Manche Anwendungen erfordern niedrige Temperaturen nahe der Umgebungstemperatur, während andere Prozesse sehr hohe Temperaturen von mehreren hundert Grad Celsius benötigen können. Die Energiequellen zur Bereitstellung dieser Wärmeenergie sind vielfältig und hängen oft von der Verfügbarkeit, den Kosten und den Umweltüberlegungen ab. Häufig genutzte Energiequellen sind fossile Brennstoffe wie Erdgas und Kohle, erneuerbare Energien wie Biomasse und Solarenergie sowie elektrische Heizsysteme. Die Übertragung und Nutzung der Wärmeenergie erfolgt durch verschiedene technische Systeme wie Öfen, Dampfkessel oder Wärmetauscher. Effiziente Wärmeübertragung ist entscheidend für die Wirtschaftlichkeit und Umweltverträglichkeit industrieller Prozesse.

Unternehmen führen oft detaillierte Analysen durch, um den spezifischen Wärmebedarf ihrer Prozesse zu bestimmen. Dabei werden Möglichkeiten zur Optimierung der Energieeffizienz und zur

Reduzierung der Kosten identifiziert. Dies kann durch die Implementierung von Wärmerückgewinnungssystemen, die Optimierung der Prozessführung oder den Einsatz moderner Technologien wie Wärmepumpen erfolgen.

2.9 Sanierung

2.9.1 Allgemeines

Unter einer Sanierung versteht man im Bauwesen die baulich-technische Wiederherstellung oder Modernisierung einer oder mehrerer Etagen bzw. eines gesamten Bauwerks oder mehrerer Bauwerke, um Schäden zu beseitigen und/oder den Wohnstandard zu erhöhen. In erster Linie geht es um die Werterhaltung der Bausubstanz. Dies betrifft sowohl die Fassade als auch den Kern.

Eine Sanierung geht über die Instandhaltung und Instandsetzung hinaus. Sie kann erhebliche Eingriffe in die Bausubstanz beinhalten wie u. a. Kernsanierung unter Beibehaltung der Fassaden und beinhaltet meist eine Modernisierung. Ein Teilgebiet ist die energetische Sanierung. Für behindertengerechtes Wohnen bzw. Arbeiten kann auch das barrierefreie Bauen Ziel einer Teilmodernisierung sein.

2.9.2 Rolle der EU

Die Europäische Union (EU) spielt eine entscheidende Rolle bei der Festlegung von Standards zur Energieeffizienz und zur Reduzierung der Umweltauswirkungen durch verbindliche Vorgaben wie die Mandatory Minimum Energy Performance Standards. Diese Standards sind Teil eines umfassenderen Rahmens, der darauf abzielt, den Energieverbrauch zu senken und den Übergang zu einer nachhaltigen Energieversorgung zu fördern.

In der kommunalen Wärmeplanung kommen diese Standards besonders zum Tragen, da sie die Grundlage für die Entwicklung und Umsetzung effizienter Wärmeversorgungssysteme in Städten und Gemeinden bilden. Konkret legen die Standards fest, welche Mindestanforderungen an die Energieeffizienz von Gebäuden und Heizanlagen erfüllt werden müssen. Dies betrifft sowohl Neubauten als auch bestehende Gebäude, insbesondere wenn diese saniert oder modernisiert werden. Für Kommunen bedeutet dies, dass sie bei der Planung ihrer Wärmeinfrastruktur die Einhaltung dieser Standards berücksichtigen müssen. Dies kann die Auswahl energieeffizienter Heiz- und Kühlsysteme, die Verbesserung der Gebäudedämmung, den verstärkten Einsatz erneuerbarer Energien wie Solarenergie oder Biomasse sowie die Implementierung von Fernwärme- oder Kältenetzen umfassen.

Die EU-Richtlinien und Standards fördern auch die Integration innovativer Technologien und erneuerbarer Energiequellen in die kommunale Wärmeplanung. Sie unterstützen Kommunen dabei, ihre Klimaziele zu erreichen, indem sie den CO₂-Ausstoß reduzieren und die Umweltbelastung durch Wärmeerzeugung verringern. Darüber hinaus können Kommunen von Förderprogrammen der EU profitieren, die finanzielle Unterstützung für die Umsetzung energieeffizienter Maßnahmen bereitstellen.

Insgesamt bieten die EU-Richtlinien und die Mandatory Minimum Energy Performance Standards einen wesentlichen Rahmen für die kommunale Wärmeplanung. Sie unterstützen die Entwicklung und Umsetzung nachhaltiger und zukunftsfähiger Wärmeversorgungssysteme, die sowohl wirtschaftliche als auch ökologische Vorteile bieten [9].

2.9.3 Gebäudehülle

Der Aufbau der Gebäudehülle in Deutschland hat sich über die Jahrzehnte hinweg stark verändert, insbesondere in Bezug auf die Verbesserung der energetischen Effizienz und die Reduktion des Energieverbrauchs. Bis in die 1970er Jahre hinein waren Gebäudehüllen oft schlecht gedämmt und bestanden aus massiven Wänden ohne zusätzliche Dämmmaterialien. Fenster waren einfach verglast und boten wenig Wärmeschutz, was zu hohen Wärmedurchgangskoeffizienten (U-Werten) führte und zu einem hohen Energieverlust durch die Gebäudehülle.

Mit den energiepolitischen Veränderungen und der Ölkrise in den 1970er Jahren begannen erste Regelungen zur Verbesserung der Wärmedämmung von Neubauten. In den 1980er und 1990er Jahren wurden mehrschichtige Wandaufbauten mit Dämmstoffen wie Polystyrol oder Mineralwolle üblich. Fenster erhielten allmählich Verbesserungen durch den Einsatz von Isolierverglasungen mit niedrigeren U-Werten. Seit den 1990er Jahren wurden die energetischen Anforderungen an Gebäude weiter verschärft, insbesondere durch die Einführung der Energieeinsparverordnung (EnEV) in Deutschland. Die Nutzung hochwertiger Dämmmaterialien wie expandiertem Polystyrol (EPS) oder Polyurethan (PUR) nahm zu, um eine bessere Wärmedämmung zu erreichen. Wände wurden besser isoliert, und Fenster erhielten immer häufiger Dreifachverglasungen mit deutlich niedrigeren U-Werten. Heute sind Neubauten in Deutschland in der Regel so gestaltet, dass sie den Anforderungen des aktuellen Gebäudeenergiegesetzes (GEG) entsprechen. Diese Gesetzgebung legt fest, dass Gebäude einen bestimmten maximalen Energiebedarf pro Quadratmeter und Jahr einhalten müssen, was zu einem sehr niedrigen U-Wert für die Gebäudehülle führt. Moderne Häuser sind oft Passivhaus-Standard oder Niedrigenergiehaus-Standard, was bedeutet, dass sie sehr wenig Energie für Heizung und Kühlung benötigen. Mögliche Ausführungen der Dämmung für die Wesentlichen Bauteile von Gebäuden sind in Abbildung 10 aufgeführt.

Zusammengefasst lässt sich sagen, dass sich der Aufbau der Gebäudehülle in Deutschland erheblich verbessert hat, von ungeeigneten und energieverschwenderischen Konstruktionen zu hochgradig dämmenden und energieeffizienten Gebäudehüllen, die den modernen Anforderungen an Nachhaltigkeit und Umweltschutz gerecht werden.

Bauteil	Mögliche Ausführungen	U-Wert in W/(m²K)
Außenwand	Eichenfachwerk mit Lehmausfachung, Vollziegelmauerwerk, zweischaliges Ziegelmauerwerk, Bimsvollsteine, Gitterziegel, Kalksandlochsteine, Holzständerwand, Wärmedämmverbundsystem	1,90 bis 0,21
Kellerdecke	Holzbalkendecke mit Strohlehmwickel, scheitrechte Kappendecke, Ortbetondecke, Stahlbetondecke, +Trittschalldämmung, Kellerdeckendämmung	1,04 bis 0,30
Oberste Geschossdecke	Holzbalkendecke mit Strohlehmwickel oder mit Blindboden und Lehmschlag, Stahlbetondecke, + Mineralwolle, Dämmplatten	1,22 bis 0,17
Dachschräge	Steildach, ohne Dämmung, Holzschalung, Heraklithplatten unter den Sparren, Mineralwolle zwischen den Sparren, Gipskartonplatten, + Dämmung	1,80 bis 0,13
Fenster	Einfachverglasung in Holzrahmen, Isolierverglasung in Holz- oder Kunststoffrahmen, Holz- Verbundfenster, Zweischeiben-Wärmeschutzverglasung	5,20 bis 1,10

Abbildung 10: Mögliche Ausführungen der wesentlichen Bauteile von Gebäuden hinsichtlich der Dämmung [10]

2.9.4 Temperaturklassen und Heizkörper

Heizungssysteme werden in Hoch-, Mittel- und Niedrigtemperaturklassen unterschieden, basierend auf der Vorlauftemperatur des Heizwassers, das sie benötigen. Die Vorlauftemperatur bezeichnet die Temperatur des Wassers, das den Heizkörpern zugeführt wird, während die Rücklauftemperatur die niedrigere Temperatur des Wassers beschreibt, das nach der Wärmeabgabe zum Wärmeerzeuger zurückfließt. Hochtemperatur-Heizkörper sind für Systeme ausgelegt, bei denen das Heizwasser Temperaturen von 70 bis 90 Grad Celsius erreicht. Mitteltemperatur-Heizkörper arbeiten bei moderaten Vorlauftemperaturen zwischen 50 und 70 Grad Celsius. Niedrigtemperatur-Heizkörper sind für Heizsysteme konzipiert, die mit Vorlauftemperaturen unter 50 Grad Celsius arbeiten, wie es bei modernen Wärmepumpen der Fall ist. Die Effizienz, insbesondere im Zusammenhang mit Wärmepumpen, steigt mit sinkender Systemtemperatur. Eine Übersicht der drei Heizklassen ist in Abbildung 11 dargestellt.

Abbildung 11: Temperaturklassen und Heizkörper

2.9.5 Heizkurve

Die Heizkurve beschreibt den Zusammenhang zwischen Außentemperatur und Vorlauftemperatur, wobei sie bestimmt, mit welcher Vorlauftemperatur die Heizflächen bei unterschiedlichen Außentemperaturen versorgt werden. Sie hängt von Faktoren wie der Auslegungs-Vorlauftemperatur, der Art der Heizungsanlage (z. B. Fußboden- oder Radiatorenheizung) sowie der Gebäudehülle und dämmung ab. Ein Regler passt kontinuierlich die Vorlauftemperatur an die aktuellen Bedingungen an. Durch Gebäudeleittechnik können zusätzlich weitere Einflussgrößen, wie die Sonnenstrahlung, berücksichtigt werden. Eine korrekt eingestellte Heizkurve reduziert Wärmeverluste, verbessert die Regelung der Raumtemperaturen und trägt so zur Energieeinsparung bei. Die Heizkurven der drei Temperaturklassen sind in Abbildung 12 veranschaulicht. Diese Darstellung zeigt, wie sich die Vorlauftemperatur je nach Außentemperatur für Hoch-, Mittel- und Niedrigtemperatur-Heizsysteme ändert.

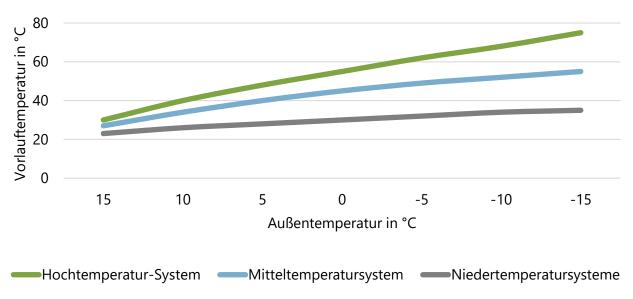


Abbildung 12: Heizkurven verschiedener Heizsysteme [11]

2.9.6 Nachträgliche Fassadendämmung

Bei der Dämmung von Fassaden kann zwischen Außen-, Innendämmung sowie der Dämmung im Zwischenraum bzw. dem Bauteil selbst unterschieden werden. Die Statistik der IWU in Abbildung 13 zeigt, so wie es auch als Stand der Technik gilt, dass die Außendämmung bevorzugt genutzt wird und insgesamt 75 % der Fälle einnimmt. Die Innendämmung kommt am meisten nur bei Fachwerkhäusern vor, was darauf zurückzuführen ist, dass das Aussehen dort oft denkmalgeschützt ist. Die Dämmung im Zwischenraum ist mit 9 % ebenfalls weniger relevant, was daran liegt das diese nur bei zweischaligen Mauerwerken mit Hohlraum möglich ist.

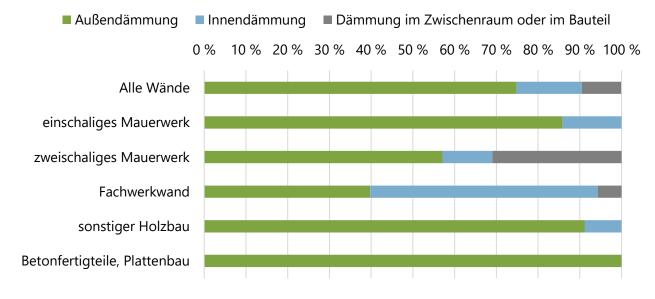


Abbildung 13: Art der Wärmedämmung im Überblick und nach Wandtypen [7]

2.9.6.1 Typische Fassadendämmung in der Praxis

Die Fassadendämmung variiert erheblich je nach Gebäudetyp und -alter. Fachwerkhäuser, die durch ihre Konstruktion eine komplexe Dämmproblematik aufweisen, erhalten in der Regel eine innenliegende Wärmedämmung. Diese Methode schützt die historische Fassade und optimiert gleichzeitig die Energieeffizienz, ohne das äußere Erscheinungsbild zu verändern.

Bei Gründerzeithäusern ist die Anwendung von Dämmmaßnahmen oft mit einer genauen Kosten-Nutzen-Analyse verbunden. Hier muss sorgfältig abgewogen werden, ob und in welchem Umfang eine Dämmung sinnvoll ist, da bauliche Veränderungen an diesen historischen Gebäuden besondere Anforderungen und Restriktionen mit sich bringen können.

Für Zwischenkriegsbauten, die modernisiert und für viele Jahre genutzt werden sollen, bietet sich in der Regel ein außenliegender Vollwärmeschutz als geeignete Lösung an. Dieser Ansatz ermöglicht eine umfassende Verbesserung der Energieeffizienz und verlängert die Nutzungsdauer des Gebäudes erheblich. Der außenliegende Vollwärmeschutz schützt nicht nur vor Wärmeverlusten, sondern kann auch die Fassade vor Witterungseinflüssen bewahren und zur Werterhaltung des Gebäudes beitragen.

2.9.6.2 Außen- vs. Innenwanddämmung

Die Außenwanddämmung bietet im Vergleich zur Innenwanddämmung deutliche bauphysikalische Vorteile. Bei der Außenwanddämmung werden alle tragenden Außenwände und Zwischendecken vollständig isoliert, wodurch Wärmebrücken weitgehend vermieden werden. Zudem reduziert diese Methode das Risiko von Tauwasserbildung und Feuchteschäden wie Schimmel erheblich, da die Dämmung das gesamte Wandaufbausystem schützt. Auch Wasserleitungen in den Außenwänden sind durch die Außendämmung vor Frost geschützt.

Jedoch bringt die Außenwanddämmung auch einige Nachteile mit sich. Die äußere Erscheinung des Hauses wird durch die angebrachte Dämmschicht verändert, was auch Anpassungen an Fenstern, Dachüberständen und Grundstücksgrenzen nach sich ziehen kann. Bei kleineren Fenstern kann die Verdickung der Außenwände zudem zu einer verminderten Lichtdurchlässigkeit führen. In vielen Fällen überwiegen die Vorteile der Außendämmung die Nachteile, insbesondere wenn es um die Vermeidung von Wärmebrücken und Feuchtigkeitsschäden geht. Ausnahmen bestehen jedoch, etwa wenn eine Fassade aus denkmalpflegerischen Gründen erhalten bleiben soll oder bei Ferienhäusern, die schnell aufgeheizt werden müssen, wo eine Innendämmung oft die bessere Wahl darstellt.

2.9.7 Fenster

Fenster in Wohngebäuden gibt es in verschiedenen Ausführungen, darunter Ein-, Zwei- und Dreifachverglasungen. Während Einfachverglasung bis in die 1970er Jahre weit verbreitet war, hat sich die Dreifachverglasung seit Mitte der 2000er Jahre zunehmend durchgesetzt. Abbildung 14 zeigt den aktuellen Bestand der Verglasungen in deutschen Wohngebäuden und verdeutlicht, dass mit 94 % die Zweifachverglasung am häufigsten vertreten ist. Fenster mit Mehrfachverglasung bieten eine deutlich bessere Wärmedämmung und tragen erheblich zur Energieeffizienz eines Gebäudes bei. Während Einfachverglasungen in älteren Gebäuden oft zu hohen Wärmeverlusten führen, reduziert Dreifachverglasung den Energieverbrauch und die Heizkosten durch ihre überlegene Isolierwirkung.

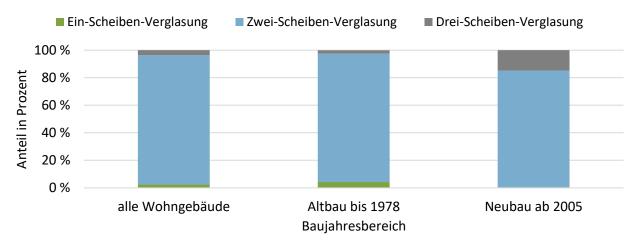
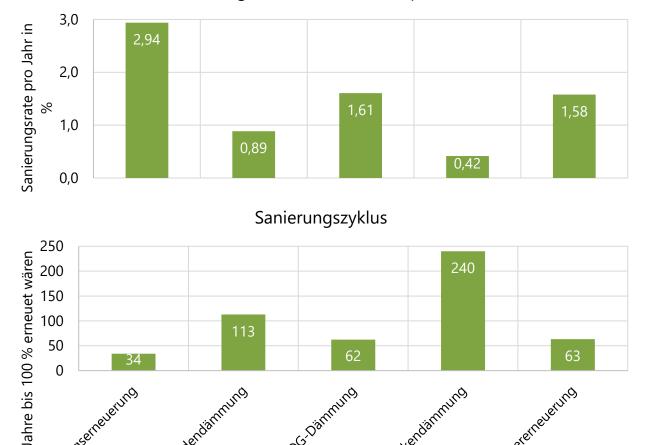


Abbildung 14: Verglasungsarten nach Fensterbaujahr in Deutschland [7]


2.9.8 Historische Sanierungsraten

Unter Sanierungsrate versteht man eine Kennzahl, welche Aufschluss über die durchschnittlich durchgeführte Anzahl an Sanierungen gibt . Oft wird diese pauschal im Sinne einer "Gesamtsanierungsquote" in Bezug auf Wohngebäude genutzt. Dies ist jedoch bedingt zielführend, da sich die Sanierungsquote zwischen den Gebäudeelementen stark unterscheidet. In Abbildung 15 ist dargestellt, wie sich die Sanierungsrate je Maßnahme unterscheidet. Zudem wird der Sanierungszyklus aufgezeigt, also die Dauer, bis 100 % des Gebäudebestands eine entsprechende Sanierung erfahren hätten. Dabei fällt auf, dass Heizungserneuerungen mit einem Zyklus von 34 Jahren seltener durchgeführt werden als aufgrund ihrer typischen Lebensdauer zu erwarten wäre. Weiterhin zeigt sich, dass Fassadendämmungen und Kellerdeckendämmungen mit Zyklen von über 100 Jahren praktisch oberhalb der erwarteten Nutzungsdauer von Wohngebäuden liegen und somit in der Regel nicht durchgeführt werden.

Sanierungsrate in Deutschland pro Jahr

Dath/OG-Dannung

62

Maßnahme

Abbildung 15: Sanierungsrate und -zyklus [12]

34

0

Hingegen sind die Fenstererneuerung und die Dach- bzw. Obergeschossdämmung mit je ca. 60 Jahren deutlich häufiger und insbesondere für den Hauptgebäudebestand in den Jahrzehnten nach dem zweiten Weltkrieg gebaut wurden sehr relevant. Hier ist demnach anzunehmen, dass an einem Großteil der Gebäude entsprechende Maßnahmen durchgeführt wurden, wodurch sich der energetische Standard um etwa 50 bis 60 Jahre verbessert hat.

2.9.9 Beispiele für Sanierung und Heizungswechsel

Fassadendärnnund

Um ein besseres Verständnis für Optionen und erfolgreich umgesetzte Sanierungen und Heizungswechsel zu erhalten, ist es sinnvoll, sich mit Beispielen aus der Praxis auseinanderzusetzen. Ein anschauliches Beispiel findet sich in [12]. Das Einfamilienhaus, das 1968 erbaut wurde, ist ein freistehendes Gebäude mit einem Vollgeschoss sowie einem beheizten Dachgeschoss und einer beheizten Fläche von 168 Quadratmetern.

Die durchgeführten Sanierungsmaßnahmen umfassten:

Wärmeerzeuger: Austausch des Öleinzelofens durch eine Wärmepumpe im Jahr 2014.

- Wärmeübergabesystem: Austausch der Heizkörper im Jahr 2015.
- Außenwände: 50 mm Dämmung an der Nord- und Ostseite, Originalzustand an der Süd- und Westseite.
- Fenster: Austausch einiger Fenster im Jahr 2015 mit 3-fach-Verglasung.
- Dach: 160 mm Dämmung im Jahr 2015.

Die Wärmepumpe, welche im Jahr 2014 in das Haus eingebaut wurde, nutzt die Außenluft als Wärmequelle. Der Wärmeerzeuger besteht aus einer Wärmepumpe, die sowohl für die Raumheizung als auch für die Trinkwassererwärmung verantwortlich ist, ergänzt durch einen Heizstab im Vorlauf. Zusätzlich werden Solarthermie und ein Kaminofen zur Unterstützung der Raumheizung genutzt. Das Wärmeübergabesystem besteht aus Plattenheizkörpern.

In der Auswerteperiode von Juli 2017 bis Juni 2018 betrug der spezifische Heizwärmeverbrauch 105 kWh pro Quadratmeter. Die Jahresarbeitszahl der Wärmepumpe lag bei 2,9. Die mittlere Vorlauftemperatur des Heizkreises betrug 33,7 Grad Celsius, während die mittlere Temperatur des Trinkwassersystems 46,2 Grad Celsius betrug. Der Deckungsbeitrag der Solaranlage belief sich auf 7 Prozent. Dieses Beispiel illustriert, wie durch gezielte Sanierungsmaßnahmen und den Einsatz moderner Technologien die Energieeffizienz eines älteren Gebäudes signifikant verbessert werden kann.

2.10 EE-Technologien zur Wärmeerzeugung

Im Rahmen der Potenzialanalyse werden quantitativ und räumlich differenziert die im beplanten Gebiet vorhandenen Potenziale zur Erzeugung von Wärme aus erneuerbaren Energien, zur Nutzung von unvermeidbarer Abwärme und zur zentralen Wärmespeicherung ermittelt. Bei der Ermittlung der Potenziale ist dem Ziel Rechnung zu tragen, einen möglichst großen Anteil der klimaneutralen Wärmeversorgung über lokale Energiequellen bereitzustellen. Bekannte räumliche, technische oder rechtliche Restriktionen für die Nutzung von Wärmeerzeugungspotenzialen sind zu berücksichtigen. Dabei werden zudem Potenziale zur Energieeinsparung durch Wärmebedarfsreduktion (Sanierung) in Gebäuden und industriellen und gewerblichen Prozessen abgeschätzt. Abbildung 16 zeigt eine Übersicht der potenziellen Technologien zur Wärmeerzeugung auf Basis erneuerbarer Energien und die Möglichkeiten zur Wärmereduktion.

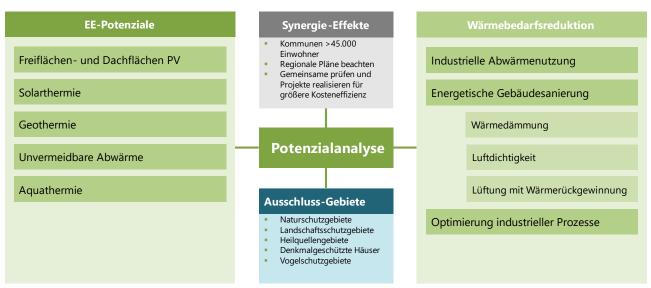


Abbildung 16: EE-Technologien zur Wärmeerzeugung

2.10.1 Wärmepumpen

2.10.1.1 Allgemeines

Eine Wärmepumpe für Wohngebäude nutzt das Prinzip der thermodynamischen Kreisprozesse, um Wärmeenergie aus einer niedrigeren Temperaturquelle zu entziehen und auf ein höheres Temperaturniveau zu bringen, das für Heizzwecke genutzt werden kann. Der detaillierte Ablauf ist wie folgt:

- Verdampfung (Außeneinheit): Die Wärmepumpe nimmt Wärme aus der Umgebungsluft, dem Erdreich oder dem Grundwasser auf. In der Außeneinheit befindet sich ein Verdampfer, in dem das Kältemittel (ein spezielles Gas oder eine Flüssigkeit) durch den Kontakt mit der Umgebungsluft verdampft. Dabei nimmt das Kältemittel die Umgebungswärme auf.
- 2. Kompression (Kompressor): Das verdampfte Kältemittel wird in den Kompressor geleitet, wo es komprimiert wird. Durch die Kompression erhöht sich der Druck und die Temperatur des Kältemittels erheblich. Die elektrische Energie, die für den Betrieb des Kompressors benötigt wird, ist der Hauptenergieverbrauchspunkt der Wärmepumpe.
- 3. Kondensation (Inneneinheit): Das heiße, komprimierte Kältemittel strömt nun durch einen Kondensator in der Inneneinheit der Wärmepumpe. Hier gibt das Kältemittel die aufgenommene Wärmeenergie an das Heizungssystem des Gebäudes ab. Durch den Wärmeaustausch im Kondensator wird das Kältemittel abgekühlt und kondensiert wieder zu einer Flüssigkeit.
- 4. Entspannung (Expansionsventil): Das abgekühlte und flüssige Kältemittel durchläuft nun ein Expansionsventil, das den Druck und die Temperatur des Kältemittels senkt. Dadurch wird es wieder auf das Niveau gebracht, das für den Verdampfungsprozess in der Außeneinheit erforderlich ist.

Dieser Kreislauf setzt sich kontinuierlich fort, solange die Wärmepumpe in Betrieb ist und Wärme für das Heizsystem oder auch für die Warmwasserbereitung benötigt wird. Wärmepumpen nutzen die kostenlose Umweltenergie effizient, indem sie nur einen kleinen Teil elektrischer Energie für den Betrieb des Kompressors benötigen. Die Effizienz einer Wärmepumpe wird durch den sogenannten COP (Coefficient of Performance) gemessen, der das Verhältnis von abgegebener Heizleistung zur aufgenommenen elektrischen Leistung angibt. Moderne Wärmepumpen erreichen typischerweise einen COP von über 4, was bedeutet, dass sie mehr als das Vierfache der eingesetzten elektrischen Energie als Heizleistung erzeugen können. Zusätzlich zur Heizfunktion können Wärmepumpen auch im Sommer für die Kühlung genutzt werden. Hierbei wird der Kreisprozess umgekehrt, wodurch die Wärme aus dem Innenraum abgeführt und nach außen transportiert wird.

Insgesamt bieten Wärmepumpen eine nachhaltige und effiziente Alternative zu konventionellen Heizsystemen, da sie erneuerbare Umweltenergie nutzen und so zur Reduzierung der CO₂-Emissionen und der Abhängigkeit von fossilen Brennstoffen beitragen können.

2.10.1.2 Umgebungsluft

Luft-Wärmepumpen nutzen die Umgebungsluft als Wärmequelle und können Wasser oder Luft auf der Sekundärseite als Wärmeübertragungsmedium verwenden. Der Vorteil dieser Systeme liegt vor allem in ihrem vergleichsweise geringen Installationsaufwand und den niedrigen Anschaffungskosten, die typischerweise zwischen 12.000 und 25.000 Euro liegen. Sie haben auch den Vorteil, dass Luft als Wärmequelle leicht verfügbar ist. Jedoch ist die Effizienz dieser Systeme oft geringer als bei anderen Wärmepumpen. Besonders bei geringen Außentemperaturen sinkt die Leistungsfähigkeit erheblich. Zudem ist die Umgebungsluft in dichtbebauten Gebieten begrenzt verfügbar, was die

Effizienz weiter beeinträchtigen kann. Ein weiterer Nachteil sind die möglichen Schallemissionen, die störend sein können. Die Lebensdauer einer Luft-Wärmepumpe beträgt in der Regel 15 bis 20 Jahre.

Die Effizienz der Luft-Wärmepumpe kann durch mehrere Faktoren verbessert werden. Eine gute Wärmedämmung des Gebäudes minimiert Wärmeverluste, eine Fußboden- oder Wandheizung ermöglicht den Betrieb mit niedrigen Heizwassertemperaturen und die Installation an einem schallgeschützten Ort kann die Geräuschbelastung reduzieren. Es gibt auch spezialisierte Luft-Luft-Wärmepumpen, die sich besonders für Passivhäuser eignen. Diese Geräte verzichten auf Heizkessel und Heizkörper, indem sie die Wärme direkt in die Lüftungsanlage einspeisen.

2.10.1.3 Erdkollektoren

Die Sole-Wasser-Wärmepumpe wird auch als Erdwärmepumpe bezeichnet. "Sole" ist die frostgeschützte Flüssigkeit, die durch die Heizschlangen im Boden zirkuliert und dabei Wärme aus dem Erdreich (oberflächennahe Geothermie) aufnimmt. Diese Systeme können entweder horizontal als Kollektoren verlegt oder vertikal als Sonden in den Boden eingebracht werden.

Erdwärme-Kollektoren werden flächig unterhalb der Frostgrenze in etwa 1,5 Metern Tiefe verlegt, weshalb sie auch als Flächenkollektoren bezeichnet werden. In dieser Tiefe wird die Erdwärme hauptsächlich durch im Erdreich gespeicherte Sonnenenergie und Regenwasser bereitgestellt. Die Fläche über den Kollektoren sollte daher nicht überbaut oder versiegelt werden, und tiefwurzelnde Pflanzen sollten dort nicht gepflanzt werden. Einmal verlegt, sind die Kollektoren an der Oberfläche nicht mehr sichtbar.

Flächenkollektoren erfordern häufig umfangreiche Grabungen. Ein Quadratmeter Boden kann etwa 25 Watt Wärme liefern (Spanne: 10 bis 40 W/m²). Bei einer Heizleistung von 10 Kilowatt werden daher etwa 300 Quadratmeter Kollektoren benötigt, vorausgesetzt, die Jahresarbeitszahl (JAZ) der Wärmepumpe beträgt 4. Der Platzbedarf kann reduziert werden, wenn die Rohre als Körbe oder übereinander geschichtete Grabenkollektoren verlegt werden.

2.10.1.4 Erdwärmesonden

Erdwärmesonden sind platzsparend, da sie im Vergleich zu Kollektoren nicht das gesamte Grundstück umgegraben werden muss. Die Sonden werden in der Regel 30 bis 200 Meter tief gebohrt, durchschnittlich etwa 100 Meter. Mehrere kürzere Bohrungen sind ebenfalls möglich, jedoch sollten die Sonden mindestens 6 bis 10 Meter voneinander entfernt sein, um gegenseitige Beeinflussungen zu vermeiden.

Erdwärmesonden heizen besonders effizient, da sie auf das hohe Temperaturniveau der Wärmequelle zugreifen. Ab einer Tiefe von etwa 10 Metern liegt die Temperatur ganzjährig bei etwa 10 °C, sodass die Wärmepumpe selten von einem Heizstab unterstützt werden muss. Für eine Heizleistung von 10 kW muss die Bohrtiefe etwa 150 Meter betragen. Bei kürzeren und kostengünstigeren Bohrungen kann der Boden im Sommer durch eine Solarthermie-Anlage mit Wärme "beladen" werden.

Obwohl Erdwärmesonden hohe Kosten für Erdarbeiten verursachen, bieten sie einen höheren Wirkungsgrad und damit niedrigere laufende Stromkosten. Die Kosten für die Wärmepumpe betragen etwa 9.000 bis 11.000 Euro, während die Bohrkosten für die Sonden bei einem Einfamilienhaus durchschnittlich etwa 6.000 Euro betragen. Die Bohrkosten variieren je nach Untergrund; bei stark gesteinshaltigem Boden können sie bis zu 100 Euro pro Meter kosten, normalerweise liegen sie jedoch

zwischen 45 und 75 Euro. Laut dem Fraunhofer-Institut ISE erreichen Erdwärmepumpen in Bestandsgebäuden eine durchschnittliche Jahresarbeitszahl von 4,1. Aufgrund ihres geringen Stromverbrauchs eignen sie sich besonders für Altbauten mit höherem Wärmebedarf.

2.10.1.5 Tiefe Geothermie

Tiefengeothermie nutzt die im Inneren der Erde gespeicherte Wärme für die Stromerzeugung sowie die Heizung und Kühlung von Gebäuden. Hierzu werden Bohrungen von mehreren hundert bis mehreren tausend Metern Tiefe durchgeführt, um heiße Gesteinsschichten zu erreichen, in denen Temperaturen von mehreren hundert Grad Celsius herrschen. Ein Medium, typischerweise Wasser, wird durch diese Bohrlöcher gepumpt, erwärmt sich durch den Kontakt mit den heißen Gesteinen und wird dann wieder an die Oberfläche geleitet. Die gewonnene Wärme kann direkt genutzt oder in einem Kraftwerk zur Stromerzeugung verwendet werden, indem der Dampf, der durch die Wärme erzeugt wird, eine Turbine antreibt.

Das Potenzial der Tiefengeothermie liegt in der nahezu unbegrenzten Verfügbarkeit der Energiequelle und ihrer konstanten Verfügbarkeit unabhängig von Wetterbedingungen. Dies ermöglicht eine zuverlässige und kontinuierliche Energieversorgung. Allerdings sind die hohen Investitionskosten für Bohrverfahren und Infrastruktur eine wesentliche Herausforderung. Zudem sind nicht überall geeignete geologische Bedingungen vorhanden, und die technische Komplexität der Anlagen erfordert spezialisierte Technologien. Weitere Herausforderungen sind mögliche geologische Auswirkungen wie Erdbeben und Umweltauswirkungen durch das Management und die Wiedereinspeisung von abgekühltem Wasser in den Untergrund.

Trotz dieser Herausforderungen stellt Tiefengeothermie eine vielversprechende Option für eine nachhaltige Energieversorgung dar, insbesondere in Regionen mit geeigneten geologischen Bedingungen. Technische Fortschritte, wie verbesserte Bohrtechniken könnten dazu beitragen, diese Hürden zu überwinden und die Nutzung dieser umweltfreundlichen Energiequelle weiter auszubauen.

2.10.1.6 Grundwasser

Eine Grundwasser-Wärmepumpe bietet einen mindestens ebenso hohen Wirkungsgrad wie eine Erdwärmepumpe, da Grundwasser auch im Winter Temperaturen von 8 bis 10 °C aufweist. Zur Nutzung von Grundwasser werden zwei Brunnen benötigt: ein Förderbrunnen, durch den das Wasser entnommen wird, und ein Schluckbrunnen, durch den das Wasser wieder in den Boden zurückgeführt wird.

Die Bohrtiefe für Förder- und Schluckbrunnen kann bis zu 50 Meter betragen. Idealerweise sollten die Fördertiefen zwischen 10 und 20 Meter liegen, da die Betriebskosten der Wasserpumpen mit zunehmender Tiefe steigen. Die erforderliche Förderrate liegt bei etwa 1 Liter pro Sekunde für eine Heizleistung von 15 kW, daher muss die Wassermenge ausreichend sein.

Grundwasser-Wärmepumpen erreichen laut Erfahrung der Verbraucherzentralen eine Jahresarbeitszahl (JAZ) von bis zu 5, was sie besonders wirtschaftlich macht. Die konstante Temperatur des Grundwassers und die geringeren Wärmetauscher-Verluste im Vergleich zu Erdwärmepumpen tragen zu diesem hohen Wirkungsgrad bei. Wirtschaftlich vorteilhaft sind Grundwasser-Wärmepumpen häufig ab einer Heizleistung von 10 Kilowatt, wodurch sie sich besonders für Mehrfamilienhäuser und Altbauten eignen.

2.10.1.7 See- und Flusswasserwärme

Die Nutzung von See- und Flusswasserwärme zur Energiegewinnung ist eine Form der oberflächennahen Geothermie, die auf natürliche Gewässer als Wärmequelle zurückgreift. Dabei wird die konstante Temperatur des Wassers genutzt, um Gebäude zu heizen oder zu kühlen, insbesondere in der Nähe von Seen, Flüssen oder küstennahen Gebieten. Die Technologie funktioniert durch einen Wärmetauscher im Gewässer, der vom Wasser durchlaufen wird und dessen Wärmeenergie auf ein integriertes Kältemittel überträgt. Das erwärmte Kältemittel wird dann zur Wärmepumpe transportiert, die die Wärme durch Verdichtung und Kondensation auf ein höheres Temperaturniveau bringt. Diese Wärme kann direkt für Heiz- oder Kühlzwecke genutzt werden. Das abgekühlte Wasser wird anschließend zurück ins Gewässer geleitet, wobei darauf geachtet wird, die ökologische Balance des Gewässers zu erhalten. Die Nutzung von See- und Flusswasser zur Wärmeerzeugung ist umweltfreundlich und bietet eine konstante, zuverlässige Energiequelle, jedoch erfordert sie spezifische technische Anpassungen und Berücksichtigung der örtlichen Gegebenheiten sowie Genehmigungen für den Betrieb.

2.10.2 Feste Biomasse & Holz

Die Nutzung fester Biomasse, insbesondere von Holz, als Wärmequelle ist eine bewährte Methode zur Erzeugung von Wärmeenergie in Wohnhäusern und Industrieanlagen. Biomasse umfasst dabei Holz in Form von Scheitholz, Pellets oder Hackschnitzeln sowie andere organische Materialien wie Stroh oder biologisch abbaubare Abfälle. Diese Biomasse wird in speziellen Kesseln oder Öfen verbrannt, um Wärme zu erzeugen. Moderne Heizsysteme, wie Pelletkessel oder -öfen, ermöglichen durch automatische Zuführung der Holzpellets eine kontinuierliche und effiziente Wärmeversorgung. Die Verbrennung erfolgt unter kontrollierten Bedingungen, um eine hohe Effizienz und minimale Emissionen zu gewährleisten.

In der Verbandsgemeinde Ruwer sind mit 56 ha rund 44 % der Verbandsgemeindefläche, überwiegend durch kommunale Forste bewaldet. Die Wärmebereitstellung durch Scheitholz hat daher historisch bedingt einen hohen Stellenwert, welcher sich durch den Preisanstieg fossiler Energieträger während der Corona-Pandemie festigen konnte.

Lokale Holzprodukte gelten als nachhaltige Brennstoffe und bieten Unabhängigkeit von Drittländern. Die Nutzung regionaler Holzbestände stärkt lokale Wertschöpfungsketten und fördert die nachhaltige Forstwirtschaft. In neu errichteten Heizsystemen wurden deshalb verstärkt nachwachsende Rohstoffe integriert und fossile Brennstoffe ersetzt.

Bereits im Jahr 2001 unternahm die Verbandsgemeinde Ruwer einen Vorstoß, indem sie im Rahmen einer Diplomarbeit untersuchen ließ, welche größeren Gebäude wirtschaftlich auf Pellet- bzw. Holzhackschnitzelheizungen umgerüstet werden können. Seitdem wurden acht kommunale Gebäude entsprechend umgestellt.

Im Zuge der kommunalen Wärmeplanung wird auch die gemeinschaftliche Wärmeversorgung auf Basis nachwachsender Rohstoffe aus Biomasse in Betracht gezogen. Biomasse gilt als weitgehend CO₂-neutral, da das bei der Verbrennung freigesetzte CO₂ während des Wachstums der Pflanzen

gebunden wurde. Diese Eigenschaft trägt zur Reduzierung der Treibhausgasemissionen im Vergleich zu fossilen Energieträgern bei.

Dies ist jedoch nur dann gewährleistet, wenn heimische Rohstoffe aus nachhaltiger Forstwirtschaft genutzt werden. Wie viel Holz zukünftig nachhaltig als Brennstoff aus den Wäldern entnommen werden kann, ist aufgrund der Unsicherheiten durch den Klimawandel jedoch schwer absehbar. Zunehmender Trockenstress begünstigt die Ausbreitung von Krankheiten, während Kalamitätsflächen die Austrocknung der Böden verstärken, was das Wachstum der natürlichen Waldverjüngung erschwert. Um den ökologischen Zustand des Waldes zu erhalten, ist es daher wichtig, Biomasse wie Kronenund Stammholz als Totholz im Wald zu belassen. Zudem wird die Rolle des Waldes als CO₂-Senke immer bedeutender und sollte langfristig ausgebaut werden.

In Kombination mit den Vorteilen von Niedertemperatur-Wärmenetzen soll die Wärmeversorgung durch Biomasse in der Verbandsgemeinde Ruwer nur dann in Betracht gezogen werden, wenn alternative Technologien nicht geeignet sind.

2.10.3 Solare Energiequellen

Die Nutzung solarer Energie spielt eine entscheidende Rolle in der Energie- und Wärmewende, da sie eine nachhaltige und erneuerbare Energieguelle darstellt. Photovoltaik (PV) wandelt Sonnenlicht direkt in elektrische Energie um. Auf Dächern oder Freiflächen installiert, bestehen PV-Anlagen aus Solarzellen, die das Sonnenlicht durch den photovoltaischen Effekt in Gleichstrom umwandeln. Ein Wechselrichter wandelt diesen Gleichstrom in Wechselstrom um, der ins Hausnetz oder öffentliche Netz eingespeist wird. Solarthermische Anlagen nutzen Sonnenenergie zur Wärmeerzeugung. Flachkollektoren oder Vakuumröhrenkollektoren absorbieren Sonnenstrahlen, um Trinkwasser zu erwärmen oder zur Unterstützung der Raumheizung. Ein Wärmeträgermedium transportiert die Wärme zu einem Speicher oder ins Heizungssystem. Solarenergie kann in Neubauten und bestehenden Gebäuden integriert werden. Sie ist unerschöpflich, lokal verfügbar, reduziert fossile Brennstoffe und Treibhausgasemissionen. PV und Solarthermie bieten Potenzial für eine breitere Anwendung. Herausforderungen sind die intermittierende Verfügbarkeit, Flächenbedarf für PV-Anlagen und Effizienz in kälteren Klimazonen. Speichermöglichkeiten und Netzintegration sind wichtig. Regierungen fördern die Nutzung durch finanzielle Anreize, Netzeinspeisevergütungen und Vorschriften zur Gebäudeeffizienz. Solarenergie ist eine Schlüsselkomponente für die Energie- und Wärmewende, liefert saubere Energie, reduziert Umweltbelastungen und trägt zur Energiesicherheit bei.

2.10.3.1 Solarenergie auf Dächern und Fassaden

Die Nutzung solarer Energie auf Dächern und Fassaden ist eine effektive Methode zur direkten Umwandlung von Sonnenlicht in elektrische Energie oder Wärme. Diese Energien können entweder im Gebäude verwendet oder der Strom in das öffentliche Netz eingespeist werden. Dächer bieten ausreichend Fläche für die Installation von PV-Modulen, optimiert für maximale Sonneneinstrahlung.

PV-Module können auch auf Fassaden installiert werden, um zusätzliche Flächen zur Stromerzeugung zu nutzen. Diese Integration erfordert spezielle Befestigungssysteme und berücksichtigt ästhetische Aspekte, um das architektonische Design zu bewahren. Solarthermische Anlagen nutzen ebenfalls Dächer zur Erzeugung von Wärme. Kollektoren absorbieren Sonnenstrahlen und wandeln sie in Wärme um, die für Warmwasser oder Heizungsunterstützung genutzt wird.

Die Kombination von PV-Anlagen auf Dächern und Fassaden ermöglicht energieautarke Gebäude, die ihren eigenen Strom erzeugen und Heizungsbedürfnisse durch Solarenergie decken. Solche Installationen erfordern sowohl ästhetische als auch technische Anpassungen, um die architektonische Integrität zu erhalten und Solarenergie effizient zu nutzen. Dies bietet eine nachhaltige Lösung zur Reduzierung fossiler Brennstoffe und CO₂-Emissionen. Fortschritte in Technologie und Förderprogramme machen Solarenergie wirtschaftlich attraktiver und fördern ihre weitreichende Anwendung in der Gebäudeenergieversorgung.

2.10.3.2 Photovoltaik-Thermische-Systeme (PVT)

Die PVT-Technik kombiniert die Vorteile von PV und Solarthermie in einer Anlage. PV-Zellen auf der Vorderseite wandeln Sonnenlicht direkt in elektrische Energie um. Gleichzeitig nutzen sie die erzeugte Wärme über Wärmetauscher auf der Rückseite, um Wasser zu erwärmen oder Heizungsanlagen zu unterstützen. Herausforderungen bestehen in den Kosten im Vergleich zu separaten Anlagen und der spezifischeren Planung. Obwohl die Gesamteffizienz der Module in der Regel gut abschneidet, sind die Effizienzen einzeln betrachtet oft schlechter als spezialisierte PV- oder Solarthermieanlagen.

Kombinierte Anlagen eignen sich daher insbesondere für Gebäude, bei denen sowohl eine Eigennutzung von Wärme als auch von Strom im bereitgestellten Umfang möglich ist. Fortschritte und Kostenreduktionen könnten die Verbreitung der PVT-Technik weiter fördern und ihre Wirtschaftlichkeit verbessern.

2.10.3.3 Solarthermie-Freiflächenanlage

Solarthermie-Freiflächenanlagen nutzen große offene Flächen zur direkten Gewinnung von Sonnenenergie. Sie bestehen aus Solarkollektoren mit einem Absorber, der Sonnenlicht in Wärme umwandelt, und einem Rohrsystem für ein Wärmeträgermedium. Dieses transportiert die Wärme zu einem Wärmetauscher, der sie entweder in einem Wärmespeicher speichert oder direkt ins Heizungssystem leitet. Solche Anlagen werden für industrielle Prozesswärme, Raumheizung in großen Gebäuden und Warmwasserbereitung genutzt. Sie sind effizient und reduzieren den Energiebedarf aus fossilen Brennstoffen. Flächenanforderungen und die saisonale Variabilität der Sonneneinstrahlung stellen Herausforderungen dar. Durch staatliche Förderungen und Netzeinspeisevergütungen sind sie wirtschaftlich attraktiv. Solarthermie-Freiflächenanlagen sind eine nachhaltige Lösung zur Wärmeerzeugung, die zur Reduktion von CO₂-Emissionen und zur Energiewende beitragen können.

2.10.3.4 PV-Freiflächenanlage

Photovoltaik-Freiflächenanlagen nutzen große offene Flächen zur direkten Umwandlung von Sonnenlicht in elektrische Energie. Sie bestehen aus Solarzellen, die in Arrays (=Feldern) aufgestellt sind, um maximale Sonnenenergie zu absorbieren und in Strom umzuwandeln. PV-Module bestehen aus vielen Solarzellen, die aus Silizium oder anderen Halbleitermaterialien bestehen. Diese Zellen wandeln Sonnenlicht durch den photovoltaischen Effekt direkt in Gleichstrom um. Auf Freiflächen werden die PV-Module auf speziellen Montagesystemen installiert, die eine optimale Ausrichtung zur Sonne gewährleisten. Diese können feste, geneigte oder nachgeführte Systeme umfassen, um die Sonneneinstrahlung über den Tag hinweg zu maximieren. Der erzeugte Gleichstrom wird durch Wechselrichter in Wechselstrom umgewandelt, der entweder direkt im Gebäude genutzt oder ins öffentliche Stromnetz eingespeist wird. PV-Freiflächenanlagen können eine große Menge an elektrischer

Energie erzeugen und tragen zur Stromversorgung von Industrieanlagen, Gemeinden oder als Teil des öffentlichen Stromnetzes bei. Diese Anlagen bieten eine effiziente Nutzung der Sonnenenergie und können eine bedeutende Menge an elektrischer Energie erzeugen, die zur Reduzierung der CO₂-Emissionen und der Abhängigkeit von fossilen Brennstoffen beiträgt. Herausforderungen umfassen die Notwendigkeit großer Flächen für die Installation, die Entwicklung von Standorten und gegebenenfalls die Integration in bestehende landwirtschaftliche oder ökologische Systeme. Die Integration solcher Anlagen erfordert sorgfältige Planung und Berücksichtigung von Umwelt- und Sozialverträglichkeit. Kostenreduktionen und staatliche Unterstützung durch Förderprogramme und Einspeisevergütungen können die Wirtschaftlichkeit verbessern. Photovoltaik-Freiflächenanlagen sind eine nachhaltige Lösung zur Erzeugung von sauberem Strom, die zur Energiewende beiträgt und erhebliches Potenzial für zukünftige Entwicklungen bietet.

2.10.4 Abwasserwärmenutzung

Die Abwasserwärmenutzung nutzt die Wärmeenergie aus Abwasserströmen zur Beheizung oder Kühlung von Gebäuden. Das Abwasser, das aus Haushalten, Industrieanlagen oder anderen Quellen stammt, enthält Wärmeenergie, die durch Wärmetauscher entzogen wird. Ein Wärmeträgermedium wie Wasser transportiert diese Wärme zur Gebäudeheizung oder Kühlung. Diese Technologie ist in städtischen Gebieten verbreitet, wo genügend Abwasser zur Verfügung steht. Sie reduziert den Energieverbrauch für Heizung und Kühlung erheblich, senkt CO₂-Emissionen und ist wirtschaftlich attraktiv. Herausforderungen umfassen die Vorbehandlung des Abwassers und die Integration in bestehende Systeme. Die Abwasserwärmenutzung ist eine effiziente und nachhaltige Nutzung erneuerbarer Wärmequellen für eine verbesserte Energieeffizienz.

2.10.5 **Biogas**

Biogas entsteht durch die anaerobe Vergärung organischer Materialien wie Biomasse, landwirtschaftliche Reststoffe oder organische Abfälle. Dieser Prozess erfolgt in geschlossenen Fermentern, in denen Mikroorganismen die Materialien zersetzen, wobei Methan (CH₄) und Kohlendioxid (CO₂) als Hauptbestandteile des entstehenden Biogases produziert werden.

Das Biogas wird nach der Fermentation aufbereitet, um Verunreinigungen wie Wasserstoff-sulfid und Feuchtigkeit zu entfernen. Anschließend kann es zur Erzeugung von Wärme und Strom verwendet werden. Dies geschieht entweder durch die Verbrennung des Biogases in Blockheizkraftwerken (BHKW), die gleichzeitig Strom und Wärme produzieren, oder durch seine Nutzung in Gasturbinen oder Brennstoffzellen zur ausschließlichen Stromerzeugung. Biogas findet vor allem in der dezentralen Energieversorgung Anwendung, besonders auf Bauernhöfen und in ländlichen Gemeinden. Es kann auch in größeren Anlagen aus städtischen und industriellen Abfällen gewonnen werden. Die Nutzung von Biogas ist ökologisch vorteilhaft, da es eine erneuerbare Energiequelle darstellt und zur Reduzierung der Treibhausgasemissionen beiträgt. Es unterstützt zudem die regionale Energieversorgung und fördert die Kreislaufwirtschaft, indem es organische Abfälle effizient verwertet.

Herausforderungen der Biogasnutzung umfassen die Verfügbarkeit geeigneter Substrate für die Fermentation, die Optimierung der Biogasproduktionsprozesse und die Sicherstellung einer stabilen und effizienten Betriebsführung der Anlagen. Die kontinuierliche Weiterentwicklung und technologische Innovationen in der Biogastechnologie sind entscheidend, um die Effizienz zu steigern und die Wirtschaftlichkeit dieser nachhaltigen Energiequelle zu verbessern.

2.10.6 Abwärme aus der Industrie

Industrieabwärme entsteht als Nebenprodukt industrieller Prozesse wie Verbrennung, Schmelzen oder chemische Reaktionen in Fabriken und Produktionsstätten. Diese Wärme wird üblicherweise als Abfall betrachtet, kann jedoch effizient genutzt werden, um Heizungs- und Kühlungsbedarfe zu decken oder zur Stromerzeugung beizutragen.

Die Nutzung von Industrieabwärme beginnt mit der effizienten Erfassung mithilfe von Wärmetauschern oder anderen Technologien, die die Wärme aus Abgasen oder Abwässern extrahieren. Anschließend wird die gewonnene Abwärme durch Rohrleitungen oder andere Kanäle zu einem Speicher- oder Nutzungsort transportiert. Abhängig von ihrer Temperatur und Menge kann die Abwärme entweder direkt genutzt oder zur späteren Verwendung gespeichert werden.

Es gibt verschiedene Möglichkeiten der Nutzung von Industrieabwärme:

- Direkte Beheizung von Gebäuden oder industriellen Prozessen.
- Verwendung zur Kühlung von Räumen oder Prozessen, besonders bei niedrigeren Temperaturen.
- Einsetzen in Dampfturbinen oder thermischen Kraftwerken zur Stromerzeugung.
- Direkte Verwendung in industriellen Prozessen zur Aufrechterhaltung oder Erhöhung der benötigten Temperaturen.

Die Vorteile der Nutzung von Industrieabwärme liegen in ihrer hohen Effizienz, da sie eine bereits vorhandene und oft ungenutzte Energiequelle nutzt. Dadurch können Energiekosten gesenkt und gleichzeitig die CO₂-Emissionen reduziert werden, da weniger primäre Energiequellen benötigt werden.

Herausforderungen bei der Nutzung von Industrieabwärme umfassen die technische Integration in bestehende Produktionsanlagen, die Auswahl geeigneter Wärmetauschertechnologien und die Notwendigkeit einer effizienten Wärmeübertragung und -nutzung. Eine sorgfältige Planung und technologische Innovationen sind entscheidend, um das volle Potenzial der Industrieabwärmenutzung auszuschöpfen und die Umweltbelastung zu minimieren.

2.10.7 Müllverbrennung

Die Nutzung der Abwärme aus Müllverbrennungsprozessen ist eine wichtige Methode, um Energie aus Abfallprodukten zu gewinnen. In Müllverbrennungsanlagen werden Abfälle unter kontrollierten Bedingungen verbrannt, wobei hohe Temperaturen entstehen und Wärme freigesetzt wird. Diese Wärme wird in Form von heißem Gas oder Dampf erzeugt und kann vielseitig genutzt werden.

Die Hauptanwendungen der Abwärmenutzung sind die direkte Beheizung von Gebäuden oder industriellen Prozessen sowie die Bereitstellung von Prozesswärme. Weiterhin wird die erzeugte Wärme oft zur Erzeugung von Dampf verwendet, der eine Dampfturbine antreibt, die wiederum an einen Generator gekoppelt ist und elektrischen Strom erzeugt. Dieser Strom kann entweder vor Ort verwendet oder ins Stromnetz eingespeist werden. Die Nutzung der Abwärme aus Müllverbrennungsprozessen trägt zur Effizienzsteigerung bei, da sie zusätzliche Energie aus einem ansonsten entsorgten Abfallprodukt gewinnt. Dies hilft, die Umweltbelastung zu verringern und fördert eine nachhaltigere Abfallwirtschaft, da weniger fossile Brennstoffe zur Energieerzeugung benötigt werden.

Herausforderungen bei der Nutzung der Abwärme aus Müllverbrennungsprozessen umfassen die effiziente Wärmeübertragung und -nutzung sowie die technische Integration in bestehende Industrieanlagen. Durch fortschrittliche Technologien und eine optimierte Betriebsführung können diese Herausforderungen gemeistert werden, um die Potenziale der Abwärmenutzung voll auszuschöpfen und die Umweltvorteile weiter zu maximieren.

2.10.8 Hybridsysteme

Eine Hybridheizung kombiniert verschiedene Heiztechnologien, um die Vorteile der jeweiligen Systeme zu nutzen. Das BAFA fördert Gas-Hybridheizungen, bei denen ein effizienter Gas-Brennwert-kessel mit einem erneuerbaren Wärmeerzeuger kombiniert wird. Der erneuerbare Wärmeerzeuger muss dabei mindestens 25 Prozent der Heizlast des Gebäudes übernehmen, um die Förderung zu erhalten.

In einem Hybridheizsystem kann eine Wärmepumpe die Rolle einer Ergänzung zum Gaskessel übernehmen. Dies ermöglicht eine geringere Leistung der Wärmepumpe im Vergleich zu einer reinen Wärmepumpen-Heizung, was die Kosten senkt und eine sinnvolle Übergangslösung darstellen kann. Dies ist besonders relevant, wenn derzeit keine Dämmung oder kein Austausch der Heizkörper möglich ist, um die Effizienz einer reinen Wärmepumpen-Heizung zu gewährleisten. Abbildung 17 veranschaulicht, wie die Wärmeanforderungen im Jahresverlauf variieren und wie ein Hybridheizsystem diese Anforderungen durch die Kombination von Gas- und Wärmepumpentechnologie effizient abdecken kann.

Gas-Hybridheizungen haben den Vorteil, dass sie geringere CO₂-Emissionen verursachen als reine Gasheizungen und stellen damit eine kostengünstige Übergangslösung auf dem Weg zu einer Heizlösung dar, die vollständig mit erneuerbaren Energien betrieben werden kann.

Die Umrüstung von Gas- oder Ölkesseln auf Wärmepumpen stellt besonders in alten Mehrfamilienhäusern eine große Herausforderung dar. Die hohen Vorlauftemperaturen solcher Systeme können die Effizienz der Wärmepumpe erheblich verringern. Zudem sind umfassende Sanierungen erforderlich, die mehrere Mieter oder Eigentümer betreffen, und in Eigentümergemeinschaften muss ein entsprechender Beschluss gefasst werden. Auch der begrenzte Platz für Außeneinheiten und die problematischen Schallgrenzwerte bei geringen Abständen zu Nachbargebäuden können zusätzliche Hürden darstellen.

Eine praktikable Lösung könnte eine Hybridheizung aus Wärmepumpe und fossiler Heizung zur Spitzenlastabdeckung sein, die gemäß dem GEG zulässig ist. Nach § 71 des GEG muss die Wärmepumpe dabei mindestens 30 Prozent der Heizlast übernehmen. Dies reduziert die Herausforderungen im Vergleich zu reinen Wärmepumpensystemen erheblich. Auch wenn der Nachteil in der "doppelten" Anlagentechnik liegt, ist die Integration solcher Systeme in bestehende Gebäude deutlich einfacher als bei einer reinen Wärmepumpe. Darüber hinaus bietet sich der Vorteil, dass ein Gasnetz, wenn kein Wärmenetz vorhanden ist, oft schneller und einfacher nutzbar ist.

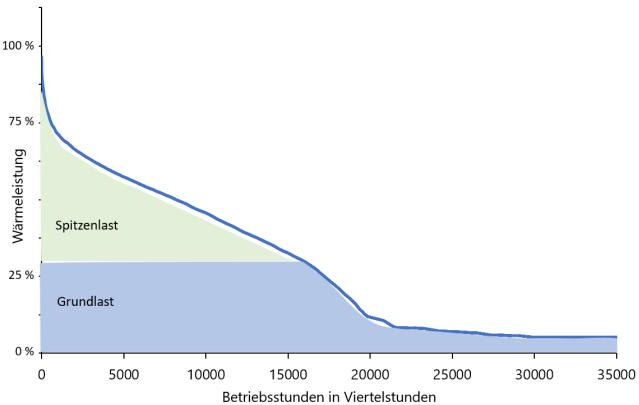


Abbildung 17: Typische Wärme-Jahresdauerlinie von Haushalten für ein Hybridsystem

2.10.9 Wasserstoff

Die Nutzung von Wasserstoff als Energieträger in der Wärmeversorgung bringt sowohl Herausforderungen als auch Vorteile mit sich. Wird Wasserstoff mithilfe erneuerbarer Energien gewonnen, kann der CO₂-Ausstoß deutlich reduziert werden. Bei seiner Verbrennung werden keine weiteren Treibhausgase emittiert. Durch die Reaktion mit Sauerstoff entsteht wieder Wasser, aus dem das Gas zuvor abgespalten wurde.

Die Nutzung bestehender Erdgasnetzinfrastrukturen kann die Verteilungs- und Nutzungskosten senken. Wasserstoff ist vielseitig einsetzbar, von der Verbrennung in Heizkesseln bis zur Nutzung in Brennstoffzellen für Wärme und Strom.

Die größten Herausforderungen bestehen aktuell in der Verfügbarkeit und den Herstellungskosten, da die Elektrolyse zur Wasserstoffproduktion derzeit teurer ist als die Herstellung fossiler Brennstoffe. Ein Grund liegt insbesondere im vergleichsweisen geringen Wirkungsgrad der Elektrolyse. Darüber hinaus erfordert das Gas zudem spezielle Lager- und Transportinfrastrukturen aufgrund seiner geringen Energiedichte. Die Integration in die bestehende Erdgasnetzinfrastruktur wird begrenzt durch Materialeigenschaften und Korrosionsprobleme, die angepasst werden müssen.

Die Fortschritte in der Wasserstofftechnologie und die Senkung der Produktionskosten sind entscheidend für eine breitere Anwendung und Integration in die Energiesysteme der Zukunft. Ob Wasserstoff die kosteneffizienteste Wärmeversorgung und für die Versorgung im Bereich der Gebäudewärme ausreichend verfügbar sein wird, ist nach heutiger Sicht ungewiss, weshalb der Fokus zunächst auf andere Technologien gesetzt werden sollte.

2.10.10 Windkraftanlagen

Windenergieanlagen nutzen die kinetische Energie des Windes, um über Rotorblätter mechanische Energie zu erzeugen, die dann durch einen Generator in elektrische Energie umgewandelt wird. Diese Technologie spielt eine zentrale Rolle in der erneuerbaren Energieerzeugung und trägt zur Reduzierung von CO₂-Emissionen bei.

In Bezug auf die Wärmeversorgung ist Windenergie relevant, da sie grünen Strom erzeugt, der für den Betrieb von Wärmepumpen genutzt werden kann. Wärmepumpen nutzen elektrische Energie, um Wärme aus der Umgebungsluft, dem Grundwasser oder dem Erdreich zu entziehen und für Heizungszwecke zu nutzen. Durch die Nutzung grüner Energien wie Windenergie zur Stromerzeugung können strombasierte Wärmequellen noch effizienter betrieben werden. Zudem kann der Bedarf an fossilen Brennstoffen reduziert und die Wärmeversorgung nachhaltig gesichert werden.

2.11 Wärmenetze

Wärmenetze sind komplexe Infrastrukturen, die dazu dienen, Wärmeenergie von zentralen oder dezentralen Erzeugungsanlagen zu Verbrauchsstellen zu transportieren. Diese Netzwerke bestehen aus einem System von Rohrleitungen, die Wärme von Heizkraftwerken, Biomasseanlagen, Solarthermieanlagen oder anderen Wärmequellen zu Wohngebäuden, Gewerbegebieten und industriellen Prozessen bringen.

Die Funktionsweise eines Wärmenetzes umfasst mehrere Schlüsselkomponenten. Die Wärmeerzeugungsanlagen erzeugen die Wärme, die dann über Wärmetauscher in das Verteilnetz eingespeist wird. Von dort aus wird die Wärme zu den Verbrauchsstellen transportiert, wo sie für Heizung, Warmwasserbereitung und industrielle Prozesse genutzt wird. Wärmenetze können je nach Größe und Reichweite unterschiedliche Formen annehmen. Fernwärmenetze sind großflächige Netzwerke, die über weite Entfernungen viele Gebäude versorgen, während Nahwärmenetze kleiner sind und oft eine Nachbarschaft oder Wohnsiedlungen bedienen. Dezentrale Lösungen wie Blockheizkraftwerke (BHKW) versorgen einzelne Gebäude oder Cluster von Gebäuden direkt vor Ort.

Die Vorteile von Wärmenetzen liegen in ihrer Energieeffizienz durch die Nutzung zentraler Erzeugungsanlagen mit hohen Effizienzgraden und in ihrer Flexibilität bei der Auswahl der Energiequellen. Durch die Integration erneuerbarer Energien und die Nutzung von Abwärme tragen Wärmenetze zur Reduzierung von CO₂-Emissionen und zur Sicherstellung einer zuverlässigen Wärmeversorgung bei. Dennoch gibt es auch Herausforderungen, darunter die hohen Investitionskosten für den Aufbau und die Erweiterung der Infrastruktur sowie technische und regulatorische Komplexitäten. Die kontinuierliche Weiterentwicklung und Optimierung der Wärmenetze sind entscheidend, um ihre Rolle in einer nachhaltigen Energieversorgung zu stärken und ihre Effizienz weiter zu steigern.

2.11.1 Wärmenetzgenerationen

Die Entwicklung der Wärmenetze lässt sich in fünf Generationen unterteilen, die jeweils verschiedene technologische und konzeptionelle Fortschritte widerspiegeln. Jede Generation baut auf den Erfahrungen und Fortschritten der vorherigen auf und treibt die Entwicklung hin zu nachhaltigeren und effizienteren Wärmeversorgungssystemen voran.

Die erste Generation, vor den 1950er Jahren, umfasste einfache Dampf- oder Heißwassersysteme, den hauptsächlich industriellen Prozessen oder öffentliche Einrichtungen versorgten, aber oft ineffizient waren. In den 1950er bis 1970er Jahren entwickelte sich die zweite Generation mit zentralisierten Fernwärmesystemen auf Basis von Hochtemperaturwasser. Diese Netze wurden erweitert, um eine größere Anzahl von Haushalten und Gewerbegebäuden zu versorgen und waren effizienter als ihre Vorgänger. Die dritte Generation, von den 1970er bis 1990er Jahren, führte die Nutzung von Kraft-Wärme-Kopplung (KWK) ein, wodurch gleichzeitig Strom und Wärme erzeugt wurden. Diese Systeme integrierten zunehmend erneuerbare Energien wie Biomasse und Müll, um die Umweltbelastung zu verringern. Ab den 1990er Jahren begann die vierte Generation, die verstärkt auf erneuerbare Energien und die Nutzung von Abwärmequellen setzte. Niedertemperatur- und Nahwärmesysteme wurden entwickelt, um besonders effizient in städtischen Gebieten eingesetzt zu werden, und neue Technologien wie Wärmepumpen und Solarenergie kamen vermehrt zum Einsatz.

2.11.2 Wärmenetzarten

2.11.2.1 Kalte Netze

Kalte Netze arbeiten mit niedrigen Systemtemperaturen, typischerweise zwischen 0°C und 15°C, und nutzen verschiedene Wärmequellen wie Erdwärme, Eisspeicher, Abwärme und Grundwasser. Auf der Primärseite nutzt eine Sole-Wasser-Wärmepumpe Primärsole mit einer Temperatur von etwa 0°C. Die Wärmequellen sind Brunnen, Eisspeicher und Abwärme, wobei die Rückläufe bei -2°C für Sole und 10°C für den Eisspeicher liegen. Das Kaltwassernetz transportiert Wasser mit Temperaturen zwischen 0°C und 15°C, wodurch keine Netzverluste entstehen, da nur die Wärmequelle genutzt wird. Auf der Sekundärseite wird ein normales Solesystem für Einzelgebäude verwendet. Die Bilanz nach DIN V 18599 / GEG zeigt einen Primärenergiefaktor von weniger als 0,5. Das System kann durch PV-Anlagen unterstützt werden, wobei die Heiztemperaturen bei 35°C und die Warmwassertemperaturen bei 45-55°C liegen.

Die Vorteile der kalten Netze umfassen niedrige Systemtemperaturen, keine Netzverluste, eine gute Primärenergiebilanz (was zu einer besseren KfW-Gebäudeeinstufung führt), die Möglichkeit der Naturkühlung im Sommer und die Option, das Netz in Etappen aufzubauen. Zu den Nachteilen gehören, dass nicht alle sekundärseitigen Systemtemperaturen möglich sind, die Investitionskosten linear mit der Anzahl der Gebäude steigen und ein großes Netzvolumen sowie die Verwendung von Glykol erforderlich sind. Zudem ist die Förderfähigkeit im BEW eingeschränkt. Die Grafik zeigt auch die möglichen Wärmequellen für die kalten Netze, darunter Erdwärme, Eisspeicher, Abwärme/Abwasser und Grundwasser.

2.11.2.2 Mittelwarme Netze (LowEx-Netze)

Mittelwarme Netze sogenannte LowEx-Netze nutzen zentrale Wärmepumpen vorzugsweise in Neubau-Gebieten. Diese Netze sind für mittlere Quartiere konzipiert und zeichnen sich durch niedrige Systemtemperaturen aus, typischerweise zwischen 40 °C und 45 °C. Auf der Primärseite nutzt das System Sole mit einer Temperatur von etwa 0 °C. Die Wärmequellen umfassen Brunnen, Eisspeicher und Abwärme, wobei die Rückläufe bei -2 °C für Sole und 10 °C für den Eisspeicher liegen. Es gibt auch Abwärmequellen, die Temperaturen zwischen 30 °C und 60 °C erreichen. Das Wasser im Netz wird dann auf etwa 27 °C erwärmt und durch ein modulares Energiesystem geführt, das eine hohe Effizienz und Flexibilität bietet.

Auf der Sekundärseite wird das Wasser auf 40 °C bis 45 °C erwärmt und in die Gebäude geleitet. Die Heiztemperaturen liegen bei 35°C und die Warmwassertemperaturen bei 45 °C bis 55 °C. Zusätzlich können Wärmepumpen-Booster eingesetzt werden, um die Temperatur auf das gewünschte Niveau zu bringen. Das System kann durch Photovoltaikanlagen unterstützt werden, was zu einer guten Primärenergiebilanz und einer verbesserten KfW-Gebäudeeinstufung führt.

Zu den Vorteilen der mittelwarmen Netze gehören niedrige Systemtemperaturen, klassische Netzsysteme, sehr geringe Netzverluste, eine gute Primärenergiebilanz und die Möglichkeit des klassischen Contracting. Zu den Nachteilen gehört, dass nicht alle sekundärseitigen Systemtemperaturen möglich sind und lokale höhere Temperaturen genutzt werden müssen.

Mögliche Wärmequellen für diese Netze sind Erdwärme, Eisspeicher, Abwärme oder Abwasser und Grundwasser. Optionen für die Warmwasserbereitung umfassen dezentrale Wohnungsstationen, dezentrale Booster-Wärmepumpen in den Wohnungen und zentrale Booster-Wärmepumpen mit Frischwasserstationen. Diese Flexibilität und Effizienz machen mittelwarme Netze zu einer attraktiven Lösung für die Wärmeversorgung in Quartieren mittlerer Größe.

2.12 Wirtschaftlichkeitsgrundlagen

2.12.1 Preisentwicklung der Energieträger

Abbildung 18 zeigt die Preisentwicklung verschiedener Energiequellen von 2021 bis 2040 in Euro pro Megawattstunde. Dabei handelt es sich um den Großhandelspreis ohne die staatlich induzierten Preisbestandteile (Steuern, Umlagen etc.).

Die meisten Preise unterliegen leichten Preissteigerungen. Nur die klimaneutralen Energien unterliegen prognostizierten Preisdegressionen. Dies betrifft sowohl die elektrische Energie, sowie die grünen Gase (grüner Wasserstoff und grünes Methan)

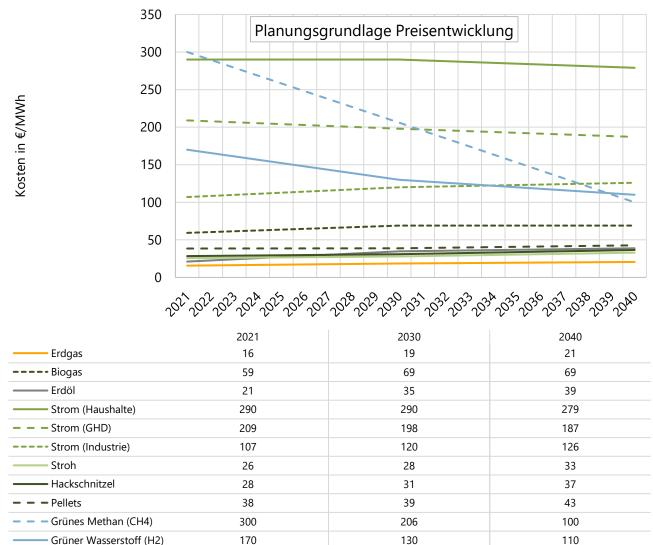


Abbildung 18: Preisentwicklung der Energieträger [13]

2.12.2 Wirtschaftlichkeit von Heizungssystemen

Abbildung 19 zeigt eine Förderübersicht des Bundesamts für Wirtschaft und Ausfuhrkontrolle (BAFA) zur Bundesförderung für effiziente Gebäude - Einzelmaßnahmen (BEG EM). Diese Übersicht bietet detaillierte Informationen zu den verschiedenen Einzelmaßnahmen und den entsprechenden Fördersätzen, die zur Verbesserung der Energieeffizienz von Gebäuden gefördert werden können. Die Tabelle ist in mehrere Spalten unterteilt, die die spezifischen Maßnahmen, die Fördersätze und zusätzliche Boni darstellen.

Zu den Einzelmaßnahmen unter der Durchführung durch das BAFA gehören unter anderem Maßnahmen an der Gebäudehülle mit einem Grundfördersatz von 15 Prozent und einem zusätzlichen iSFP-Bonus von 5 Prozent. Auch Anlagentechnik (außer Heizung) wird mit einem Grundfördersatz von 15 Prozent und einem iSFP-Bonus von 5 Prozent gefördert. Für beide Maßnahmen beträgt die Förderung für Fachplanung und Baubegleitung 50 Prozent.

Es gibt verschiedene Maßnahmen zur Wärmeerzeugung (Heizungstechnik) die gefördert werden. Dazu gehören solarthermische Anlagen, Biomasseheizungen, elektrisch angetriebene

Wärmepumpen, Brennstoffzellenheizungen, wasserstofffähige Heizungen sowie innovative Heizungstechnik auf Basis erneuerbarer Energien. Diese Maßnahmen haben einen Grundfördersatz von jeweils 30 Prozent. Zusätzlich gibt es Boni wie den Klimageschwindigkeits-Bonus (maximal 20 Prozent), den Einkommens-Bonus (30 Prozent) und eine Förderung für Fachplanung und Baubegleitung (50 Prozent). Für elektrisch angetriebene Wärmepumpen wird zudem ein Effizienz-Bonus von 5 Prozent gewährt.

Weitere Maßnahmen umfassen die Errichtung, den Umbau oder die Erweiterung eines Gebäudenetzes sowie den Anschluss an ein Gebäude- oder Wärmenetz, jeweils mit einem Grundfördersatz von 30 Prozent, einem Einkommens-Bonus von 30 Prozent und einer Förderung für Fachplanung und Baubegleitung von 50 Prozent.

Die Heizungsoptimierung wird ebenfalls gefördert, mit einem Grundfördersatz von 15 Prozent und einem iSFP-Bonus von 5 Prozent, sowie einer Förderung für Fachplanung und Baubegleitung von 50 Prozent. Maßnahmen zur Verbesserung der Anlageneffizienz und Maßnahmen zur Emissionsminderung von Biomasseheizungen werden mit einem Grundfördersatz von 15 bzw. 50 Prozent gefördert, ebenfalls jeweils mit einem iSFP-Bonus von 5 Prozent und einer Förderung für Fachplanung und Baubegleitung von 50 Prozent.

Durch- führer	Richtlinien- -Nr.	Einzelmaßnahme	Grundförder- satz	iSFP- Bonus	Effizienz- Bonus	Klima- geschwindig- keits- Bonus ²	Einkommens- Bonus	Fachplanung und Bau- begleitung
BAFA	5.1	Einzelmaßnahmen an der Gebäudehülle	15 %	5 %	-	-	-	50 %
BAFA	5.2	Anlagentechnik (außer Heizung)	15 %	5 %	-	-	-	50 %
	5.3	Anlagen zur Wärmeerzeugung (Heizungstechnik)						
KfW	a)	Solarthermische Anlagen	30 %	-	-	max. 20 %	30 %	50 %
KfW	b)	Biomasseheizungen ¹	30 %	-	-	max. 20 %	30 %	50 %
KfW	c)	Elektrisch angetriebene Wärmepumpen	30 %	-	5 %	max. 20 %	30 %	50 %
KfW	d)	Brennstoffzellenheizungen	30 %	-	-	max. 20 %	30 %	50 %
KfW	e)	Wasserstofffähige Heizungen (Investitionsmehrausgaben)	30 %	-	-	max. 20 %	30 %	50 %
KfW	f)	Innovative Heizungstechnik auf Basis erneuerbarer Energien	30 %	-	-	max. 20 %	30 %	50 %
BAFA	g)	Errichtung, Umbau, Erweiterung eines Gebäudenetzes ¹	30 %	-	-	max. 20 %	30 %	50 %
KfW	h)	Anschluss an ein Gebäudenetz	30 %	-	-	max. 20 %	30 %	50 %
KfW	i)	Anschluss an ein Wärmenetz	30 %	-	-	max. 20 %	30 %	50 %
	5.4	Heizungsoptimierung						
BAFA	a)	Maßnahmen zur Verbesserung der Anlageneffizienz	15 %	5 %	-	-	-	50 %
BAFA	b)	Maßnahmen zur Emissionsminderung von Biomasseheizungen	50 %	-	-	-	-	50 %

¹ Bei Biomasseheizungen wird bei Einhaltung eines Emissionsgrenzwert für Staub von 2,5 mg/m³ ein zusätzlicher pauschaler Zuschlag in Höhe von 2.500 Euro gemäß Nummer 8.4.6 gewährt.
2 Der Klimageschwindigkeits-Bonus reduziert sich gestaffelt gemäß Nummer 8.4.4. und wird ausschließlich selbstnutzenden Eigentümern gewährt. Bis 31. Dezember 2028 gilt ein Bonussatz von 20 Prozent.

Abbildung 19: BEG Förderung [14]

2.12.3 Wirtschaftlichkeit von Sanierung

Die Sanierungsmodellierung befasst sich mit verschiedenen Sanierungsszenarien für Gebäude, um deren Energieeffizienz zu verbessern und die Wirtschaftlichkeit der Maßnahmen zu bewerten. Die Baualtersklassen umfassen Zeiträume von vor 1900 bis zurzeit ab 2016.

Das Modernisierungspotenzial der Gebäude wird teilweise aus Immobilienportalen eingeschätzt. Dabei spielen die Kaufkraft der Eigentümer und die Marktstruktur (Mietpreisniveau) eine Rolle bei der Realisierung der Maßnahmen, was jedoch auf Häuser-Ebene als fragwürdig betrachtet wird. Sanierungspakete werden nach den Richtlinien von Cischinsky & Diefenbach (2016) definiert und verschiedene Sanierungsszenarien mit unterschiedlichen Reduktionszielen der Wärmebedarfe bis 2045 beschrieben. Diese Ziele umfassen eine moderate Gebäudeeffizienz mit einer Reduktion von 23%, eine

erhöhte Gebäudeeffizienz mit einer Reduktion von 30% und eine hohe Gebäudeeffizienz mit einer Reduktion von 37%.

Energetische Sonderfälle wie Fachwerkhäuser, Kaffeemühlenhäuser, Blockrandbebauung und Flachdachhäuser werden ebenfalls berücksichtigt. Es werden dabei bauliche Maßnahmen je nach Gebäudetyp und Baualtersklasse modelliert und die spezifischen energetischen Einsparungen sowie die Kosten pro Quadratmeter ermittelt. Der Return on Investment (ROI) wird ebenfalls berechnet.

Die Datenbank der Sanierungsmaßnahmen enthält spezifische Ansätze für unterschiedliche Gebäudearten wie Einfamilienhäuser, Reihenhäuser und Mehrfamilienhäuser. Die erwarteten Wärmebedarfsreduktionen und die notwendigen Kosten werden detailliert dargestellt. Die Präsentation stellt fest, dass die ROI-Berechnungen bei den meisten Gebäudetypen eine geringe Sensitivität auf die Sanierungsstufen zeigen, wobei neuere Gebäude aufgrund geringerer Einsparungen höhere ROI aufweisen. Insgesamt wird betont, dass für eine merkliche Einsparung Gebäude mit hohem Aufwand saniert werden müssen. Insbesondere bei neueren Gebäuden sind wirtschaftliche Sanierungsmöglichkeiten begrenzt.

Die Wirtschaftlichkeit der Sanierungsszenarien variiert stark je nach Sanierungsklasse. Während Pinselsanierungen durch sehr geringe Investitionen und kurzfristige Amortisation wirtschaftlich attraktiv sind, erfordern mittelintensive und tiefgreifende Sanierungen höhere Investitionen, bieten jedoch langfristig deutlich höhere Energieeinsparungen und Wertsteigerungen der Immobilien.

Förderungsnotwendigkeit:

- Reduzierung der finanziellen Belastung: Insbesondere für tiefgreifende Sanierungen sind die Investitionskosten ohne Förderungen für viele Hausbesitzer nicht tragbar. Förderungen helfen, die finanzielle Belastung zu reduzieren.
- Anreiz zur Sanierung: Attraktive Förderprogramme erhöhen die Bereitschaft der Eigentümer, in energieeffiziente Maßnahmen zu investieren. Dies ist besonders wichtig, um die Sanierungsrate zu erhöhen und die Klimaziele zu erreichen.
- Langfristige wirtschaftliche Vorteile: Durch Förderungen wird nicht nur die finanzielle Einstiegshürde gesenkt, sondern auch langfristig die Wirtschaftlichkeit verbessert, da die Energiekosteneinsparungen die verbleibenden Investitionskosten schneller amortisieren.

Für die Umsetzung der Sanierungsszenarien spielen Förderprogramme eine entscheidende Rolle. Sie können in Form von Zuschüssen, zinsgünstigen Darlehen oder Steuererleichterungen bereitgestellt werden. In Deutschland stehen verschiedene Programme zur Verfügung, darunter die Förderungen der KfW (Kreditanstalt für Wiederaufbau) und des BAFA (Bundesamt für Wirtschaft und Ausfuhrkontrolle).

2.12.4 Wirtschaftlichkeit von Wärmenetzinfrastruktur

Die Bundesförderung für effiziente Wärmenetze (BEW) unterstützt den Ausbau und die Modernisierung von Wärmenetzen, um die Nutzung erneuerbarer Energien zu fördern und die Energieeffizienz zu steigern. Das Programm richtet sich an Unternehmen, Kommunen und andere Akteure, die in den Ausbau und die Modernisierung von Wärmenetzen investieren möchten.

Förderfähige Maßnahmen umfassen sowohl den Neubau von Wärmenetzen als auch die Modernisierung bestehender Netze. Beim Neubau werden die Planung und Errichtung neuer Wärmenetze

gefördert, die einen hohen Anteil erneuerbarer Energien oder Abwärme nutzen. Zudem werden Erzeugungsanlagen unterstützt, die erneuerbare Energien wie Biomasse, Solarthermie und Geothermie oder Abwärme aus Industrieprozessen nutzen. Bei der Modernisierung bestehender Netze werden Maßnahmen zur Erneuerung und Erweiterung gefördert, um den Anteil erneuerbarer Energien zu erhöhen und die Effizienz zu verbessern. Auch die Integration zusätzlicher erneuerbarer Energiequellen in bestehende Netze wird unterstützt.

Effizienzsteigerungen in Wärmenetzen können durch die Optimierung der Netzsteuerung und den Bau von Wärmespeichern erreicht werden. Diese Maßnahmen zielen darauf ab, Verluste zu minimieren und den Betrieb zu optimieren, wodurch die Flexibilität und Effizienz der Netze erhöht wird.

Die BEW bietet verschiedene Förderarten an, darunter Investitionszuschüsse und zinsgünstige Kredite. Zuschüsse werden in der Regel als Prozentsatz der förderfähigen Investitionskosten gewährt, wobei die genaue Höhe von der Art der Maßnahme und dem Anteil erneuerbarer Energien abhängt. Es gibt auch Obergrenzen für die förderfähigen Kosten, die je nach Projekt variieren können. Zusätzlich zu den direkten Zuschüssen können zinsgünstige Kredite für die Finanzierung von Projekten in Anspruch genommen werden.

Das Antragsverfahren umfasst mehrere Schritte. Zunächst wird eine Initialberatung empfohlen, um die Förderfähigkeit des Projekts zu überprüfen und die optimalen Maßnahmen zu identifizieren. Ein detailliertes Konzept, das die geplanten Maßnahmen und deren erwartete Effekte beschreibt, muss erstellt werden. Der Antrag muss bei der zuständigen Behörde, in der Regel bei der Kreditanstalt für Wiederaufbau (KfW) oder dem Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA), eingereicht werden. Nach der Prüfung der Anträge wird bei Bewilligung ein Förderbescheid erteilt.

Die geförderten Projekte müssen bestimmte technische Mindestanforderungen erfüllen, um sicherzustellen, dass die Maßnahmen tatsächlich zu einer Effizienzsteigerung und einem höheren Anteil erneuerbarer Energien führen. Nach Abschluss der Maßnahmen muss der Nachweis erbracht werden, dass die Mittel zweckgemäß verwendet wurden und die geplanten Effekte erreicht wurden.

Die BEW-Förderung bietet zahlreiche Vorteile. Durch Zuschüsse und zinsgünstige Kredite wird die finanzielle Belastung für die Projektträger reduziert. Die geförderten Maßnahmen tragen zur Steigerung der Energieeffizienz der Wärmenetze bei und erhöhen den Anteil erneuerbarer Energien, was zur Reduktion der CO₂-Emissionen beiträgt. Effiziente und gut gesteuerte Wärmenetze führen zu langfristigen Kosteneinsparungen für Betreiber und Endnutzer. Beispielsweise können für Erzeugungsanlagen, die erneuerbare Energien nutzen, bis zu 40% der förderfähigen Kosten erstattet werden. Für den Ausbau und die Modernisierung von Wärmenetzen können bis zu 30% der Kosten gefördert werden, und für den Bau und die Integration von Wärmespeichern können bis zu 50% der Kosten übernommen werden.

Insgesamt bietet die BEW-Förderung eine umfassende Unterstützung für die Modernisierung und den Ausbau von Wärmenetzen. Sie trägt dazu bei, den Anteil erneuerbarer Energien zu erhöhen, die Energieeffizienz zu verbessern und die CO₂-Emissionen zu reduzieren.

3 Bestandsanalyse

3.1 Allgemeines

Die Bestandsanalyse bildet eine wesentliche Grundlage für die Entwicklung und Optimierung von Wärmeversorgungssystemen in der Region. Im Rahmen der Bestandsanalyse findet eine Erhebung des aktuellen Wärmebedarfs und -verbrauchs und der daraus resultierenden Treibhausgasemissionen, einschließlich Informationen zu den vorhandenen Gebäudetypen und den Baualtersklassen, der Versorgungsstruktur aus Gas- und Wärmenetzen, Heizzentralen und Speichern sowie Ermittlung der Beheizungsstruktur der Wohn- und Nichtwohngebäude statt. Zudem werden Energie- und Treibhausgasbilanzen nach Energieträgern und Sektoren erstellt. Durch die umfassende Analyse dieser Faktoren können gezielt Maßnahmen zur Verbesserung der Energieeffizienz und Reduzierung der CO₂-Emissionen entwickelt werden. Diese Analyse ermöglicht es weiterhin, spezifische Anforderungen und Potenziale innerhalb der unterschiedlichen Bereiche der Verbandsgemeinde zu identifizieren, um eine nachhaltige und zukunftsfähige Wärmeversorgung zu gewährleisten.

3.1.1 Datengrundlage

Zur Erstellung der kommunalen Wärmeplanung wurden zahlreiche Datenquellen genutzt. Diese sind in Tabelle 4 dargestellt.

Tabelle 4: Datenquellen für die Bestands- und Potenzialanalyse

Num- mer	Bezeichnung	Aktualität
1	Kehrdaten	Q1 2024
2	Machbarkeitsstudie: Errichtung einer Abwasserwärmenutzungsanlage zur Nahwärmeversorgung für die Ortsgemeinde Waldrach	Dezember 2023
3	Wärmestudie Trier	April 2016
4	Energie- und THG-Bilanz und Potenzialanalyse	August 2023
5	Abwassernetze	Q1 2024
6	Potenzialstudie Abwasserbehandlungsanlage	Februar 2023
7	Geofabrik / OpenStreetMap	Q1 2024
8	Layer-of-Detail 2 (LoD2) Daten	Q1 2024
9	Solare Potenzialflächen (Ministeriums für Klimaschutz, Umwelt, Energie und Mobilität Rheinland-Pfalz)	Q1 2024
10	Technikkatalog Wärmeplanung (Kompetenzzentrum Kommunale Wärmewende)	Q2 2024

3.1.2 Übersichtskarte

Die Verbandsgemeinde Ruwer ist eine Verwaltungseinheit in Rheinland-Pfalz, Deutschland. In Abbildung 20 ist eine Übersichtskarte der Verbandsgemeinde zu sehen, die die geografische Lage und die Verteilung der einzelnen Gemeinden innerhalb der Region darstellt. Die Verbandsgemeinde Ruwer erstreckt sich entlang des Flusses Ruwer, einem Nebenfluss der Mosel. Die Region ist für ihre malerische Landschaft, ihre Weinberge und ihre historischen Sehenswürdigkeiten bekannt. Weinbau spielt

eine bedeutende Rolle in der Wirtschaft und Kultur der Verbandsgemeinde Ruwer, und viele der örtlichen Winzer sind international für ihre hochwertigen Weine bekannt. In der Verbandsgemeinde Ruwer gibt es auch eine Vielzahl von Freizeit- und Erholungsmöglichkeiten, darunter Wanderwege, Radwege und Naturparks. Die Region zieht sowohl Touristen als auch Einheimische an, die die Natur genießen und die lokalen kulturellen Veranstaltungen und Traditionen erleben möchten. Die Verwaltung der Verbandsgemeinde Ruwer kümmert sich um die Belange der verschiedenen Gemeinden innerhalb ihres Gebiets, darunter Infrastrukturprojekte, Bildungseinrichtungen, soziale Dienste und kulturelle Veranstaltungen. Sie arbeitet eng mit den kommunalen Verwaltungen der einzelnen Gemeinden zusammen, um die Entwicklung und das Wohlergehen der gesamten Region zu fördern.

Abbildung 20: Übersichtskarte der Verbandsgemeinde Ruwer

3.1.3 Flächennutzung

Die Flächennutzung in der Verbandsgemeinde Ruwer, wie in vielen ländlichen Regionen, ist vielfältig und umfasst verschiedene Arten von Landnutzung. Zu den wichtigsten Kategorien der Flächennutzung gehören:

 Wald- und Forstflächen: Ein beträchtlicher Anteil der Fläche in der Verbandsgemeinde Ruwer besteht aus Wald- und Forstgebieten. Diese Flächen dienen nicht nur der Holzwirtschaft, sondern auch als Naherholungsgebiete für Wanderer, Radfahrer und Naturliebhaber.

- 2. Landwirtschaftliche Flächen: Ein weiterer bedeutender Teil der Gesamtfläche wird für landwirtschaftliche Zwecke genutzt, insbesondere für den Weinbau. Die Hänge entlang des Ruwertals sind oft mit Weinreben bepflanzt, die für den Anbau von Qualitätsweinen genutzt werden. Neben dem Weinbau werden zudem große Flächen als Acker- oder Weideland bewirtschaftet.
- 3. Siedlungsflächen: Die Verbandsgemeinde Ruwer umfasst verschiedene Dörfer, in denen sich Wohngebiete, Gewerbegebiete und öffentliche Einrichtungen befinden. Die Siedlungsflächen machen einen Teil der Gesamtfläche aus und sind oft entlang der Ruwer und ihrer Nebenflüsse sowie in den Tälern und auf den Hügeln verteilt.
- 4. Verkehrsflächen: Straßen und andere Verkehrsinfrastrukturen nehmen ebenfalls einen Anteil an der Flächennutzung ein. Sie dienen der Anbindung der verschiedenen Ortschaften innerhalb der Verbandsgemeinde sowie der Verbindung zu benachbarten Regionen.
- 5. Naturschutz- und Erholungsflächen: Überwiegende Flächen in der Verbandsgemeinde dienen der Erholung und dem Tourismus. Der Osburger Hochwald liegt im Naturpark Saar-Hunsrück und beinhaltet ein Naturschutzgebiet. Die Region bietet zahlreiche Wander- und Radwege sowie Parks und Aussichtspunkte, die zur Naherholung genutzt werden können.

3.1.4 Energieversorgung

Bevor im Laufe der nächsten Abschnitte detaillierter auf die einzelnen Heizungsenergieträger eingegangen wird, wird hier eine Übersicht der Energieversorgung zusammengefasst. Die Energieversorgung in der Verbandsgemeinde Ruwer basiert auf einer Mischung aus verschiedenen Energiequellen.

Der Strom wird überwiegend aus dem öffentlichen Netz bezogen, das von großen Energieversorgern wie der Westnetz GmbH betrieben wird. Im Jahr 2020 wurde in der Verbandsgemeinde Ruwer erstmals mehr Strom aus erneuerbaren Energiequellen erzeugt als im gesamten Jahr verbraucht wurde. Mit 49.256 MWh war der Großteil dieser Erzeugung auf die 16 Windkraftanlagen zurückzuführen, die 89 % des Gesamtaufkommens ausmachten. Private Photovoltaikanlagen trugen etwa 16 % zur Einspeisung bei. Durch verschiedene Repowering-Projekte sowie die Installation von Freiflächen-Photovoltaikanlagen wird die Stromeinspeisung in Zukunft weiter steigen.

Heizöl ist in ländlichen Gebieten wie der Verbandsgemeinde Ruwer immer noch weit verbreitet. Viele Haushalte nutzen Ölheizungen zur Wärmeversorgung, da die Infrastruktur für andere Energieträger nicht immer flächendeckend vorhanden ist. Die Öltanks befinden sich häufig direkt in den Gebäuden oder in deren Nähe. Eine leitungsgebundene Erdgasversorgung ist nur in den Ortsgemeinden Kasel und Mertesdorf und dort nicht flächendeckend verfügbar. In Gebieten ohne Erdgasanschluss kommt Flüssiggas (LPG) zum Einsatz, das in oberirdisch- oder unterirdischen Tanks auf den Grundstücken gelagert wird.

Auch die Nutzung von Biomasse, insbesondere zur Wärmeversorgung ist in ländlichen Gebieten weit verbreitet. In der Verbandsgemeinde Ruwer nutzen viele Haushalte Holzheizungen oder Pelletöfen. Unverarbeitetes Brennholz kann vergleichsweise kostengünstig und flexibel aus dem lokalen Forst, verarbeitete Produkte wie Pellets oder Hackschnitzel von spezialisierten Lieferanten bezogen werden.

Im Jahr 2020 trug die Solarthermie mit 1.650 MWh lediglich 2 % zur Wärmeversorgung aus erneuerbaren Energien bei. Die Nutzung von Umweltwärme aus Luft, Erde oder Wasser in Kombination mit Wärmepumpen wird dagegen zunehmend beliebter. Insbesondere bei Neubauten oder sanierten Gebäuden steigt die Effizienz und Nachfrage.

Der Mobilitätssektor in der Verbandsgemeinde Ruwer wird hauptsächlich durch den privaten und öffentlichen Verkehr bestimmt. In den ländlichen Gebieten dominieren weiterhin private PKWs, die überwiegend mit fossilen Energieträgern wie Benzin oder Diesel betrieben werden. Obwohl der Mobilitätssektor im Rahmen der kommunalen Wärmeplanung nicht im Detail betrachtet wird, ist er dennoch ein wichtiger Bereich, der unter anderem im Klimaschutzkonzept der Verbandsgemeinde Ruwer eingehend berücksichtigt wurde.

3.2 Vorprüfung und Ausschluss

Nach dem Entwurf des WPG soll im ersten inhaltlichen Teil der kommunalen Wärmeplanung noch eine Vorprüfung stattfinden. In der Vorprüfung wird das Gebiet auf Teilgebiete untersucht, die sich mit hoher Wahrscheinlichkeit weder für eine Versorgung über ein Wärme- oder ein Wasserstoffnetz eignen. Wenn für beides nach den folgenden Bedingungen ein Ausschlussgrund vorliegt, werden diese nicht betrachtet.

Ein Ausschluss eines Wärmenetzes kann erfolgen, wenn zum einen derzeit kein Wärmenetz im zu planenden Gebiet oder Teilgebiet vorhanden ist und zum anderen auf Basis der vorherrschenden Siedlungsstruktur und des daraus resultierenden prognostizierten Wärmebedarfs davon auszugehen ist, dass eine zukünftige Versorgung des Gebiets oder Teilgebiets über ein Wärmenetz nicht wirtschaftlich darstellbar ist.

Der Ausschluss eines Wasserstoffnetzes kann erfolgen, wenn entweder (1) in dem beplanten Gebiet oder Teilgebiet derzeit kein Gasnetz anliegt oder (2) in dem Gebiet oder Teilgebiet ein Gasnetz anliegt, dieses jedoch insbesondere aufgrund der räumlichen Lage, der Abnehmerstruktur des Gebiets oder Teilgebiets sowie des voraussichtlichen Wärmebedarfs davon ausgegangen werden kann, dass die künftige Versorgung über ein Wasserstoffnetz nicht wirtschaftlich sein wird.

Für die Verbandsgemeinde Ruwer haben wir keine Gebiete grundsätzlich ausgeschlossen, sondern betrachten trotz der ländlichen Struktur das komplette Gebiet der Verbandsgemeinde.

3.3 Endenergieverbrauch und Emissionen

Entscheidend für die treibhausgasrelevanten Effekte ist der Endenergieverbrauch der Verbandsgemeinde und den damit verbundenen energiebedingten Emissionen. Daher wird in diesem Abschnitt der Endenergieverbrauch mit den resultierenden Emissionen des Wärmesektors betrachtet. Das Jahr auf dem die meisten Daten basieren ist 2023 jedoch wird als Bezugsjahr in der Regel das aktuelle Jahr 2024 genutzt und alle Werte darauf bezogen. Es wurde hier also vereinfacht angenommen, dass die Werte von 2023 zu 2024 konstant geblieben sind, um ein einheitliches Betrachtungs- und Bezugsjahr vorliegen zu haben.

3.3.1 Verbräuche nach Energieträger

Abbildung 21 zeigt die Endenergieverteilung für Gebäude und Infrastruktur in Megawattstunden (MWh). Der größte Anteil der Energie stammt aus Heizöl, das mit 119.495 MWh 44 % des Gesamtverbrauchs ausmacht. Biomasse ist die zweitwichtigste Energiequelle und deckt mit 65.513 MWh etwa 24% des Energiebedarfs ab. Heizstrom oder sonstige Stromquellen tragen mit 69.739 MWh 25% bei. Flüssiggas macht 5% des Verbrauchs aus, was 13.329 MWh entspricht. Erdgas hat den kleinsten Anteil von 2% und liefert 6.062 MWh. Im späteren Verlauf (Abbildung 24) werden die

Energiemengen bzw. Heizungen nochmal kombiniert inkl. Kaminöfen dargestellt. Dadurch ergibt ein Unterschied zwischen den Zahlen zur hier gezeigten Grafik.

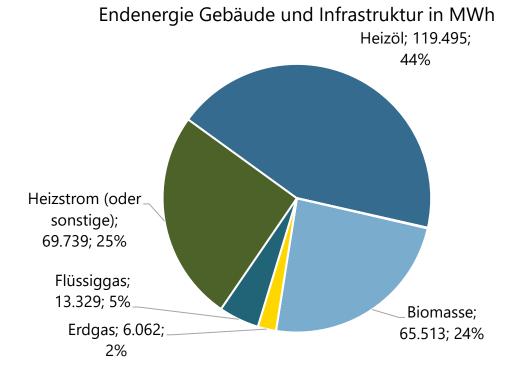


Abbildung 21: Endenergie nach Energieträger in MWh

3.3.2 Verbräuche nach Sektoren

Abbildung 22 zeigt die Verteilung der Endenergie nach Sektoren in Kilowattstunden (MWh). Haushalte sind mit 264.764 MWh der größte Energieverbraucher und machen 97 % des Gesamtverbrauchs aus. Der Sektor Gewerbe, Handel und Dienstleistungen (GHD) verbraucht 6.449 MWh, was einem Anteil von 2 % entspricht. Der kommunale Sektor hat einen Energieverbrauch von 3.131 MWh und trägt somit 1 % zum Gesamtverbrauch bei. Industrie gibt es in der Verbandsgemeinde Ruwer nicht und wird daher innerhalb des ganzen Berichts nicht separat dargestellt.

Endenergie nach Sektor in MWh

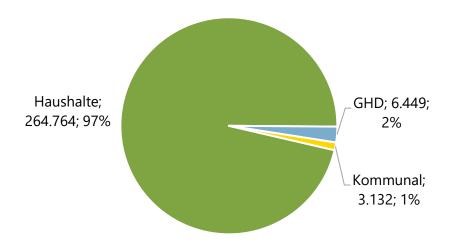


Abbildung 22: Endenergie nach Sektor in MWh

3.3.3 Erneuerbare Energien Anteil und unvermeidbare Abwärme

Abbildung 23 zeigt den Anteil erneuerbarer Energien (EE-Anteil) nach Sektoren in der VG Ruwer. Der gewichtete Mittelwert des EE-Anteils aller Sektoren liegt bei etwa 37 Prozent. Der EE-Anteil in den Haushalten liegt ebenfalls bei rund 37 Prozent. Im Bereich Gewerbe, Handel und Dienstleistungen (GHD) beträgt er rund 36 %. Im kommunalen Sektor ist der EE-Anteil etwas niedriger und beträgt etwa 28 Prozent. Diese Verteilung zeigt, dass erneuerbare Energien in der VG Ruwer eine wichtige Rolle spielen, wobei der kommunale Sektor noch Potenzial zur Steigerung des EE-Anteils aufweist.

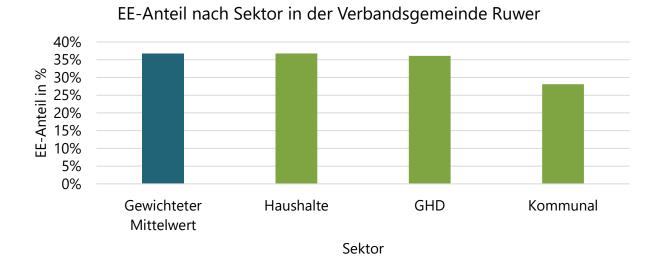


Abbildung 23: EE-Anteil der Wärmeversorgung im Status quo

3.3.4 Leitungsgebundene Wärme und dessen EE-Anteil

In der Verbandsgemeinde Ruwer gibt es im Bestand keine leitungsgebundene Wärmeversorgung. Demnach ist auch kein EE-Anteil ausweisbar.

3.3.5 Dezentrale Wärmeerzeuger

Abbildung 24 zeigt die Verteilung der Heiztechnologien nach dem Wärmebedarf. Die am häufigsten verwendete Heiztechnologie ist "Heizöl, z.T. mit Kaminofen" mit knapp 140 Tsd. MWh. Darauf folgen elektrische Heizsysteme (Wärmepumpen und direktelektrische Heizungen) mit ca. 70 Tsd. MWh und Biomasse-Heizsysteme mit 42 Tsd. MWh. Flüssiggasheizungen, teilweise mit Kaminofen, zählen ca. 15 Tsd. MWh, Erdgasheizungen, ebenfalls teilweise mit Kaminofen, haben ca. 7 Tsd. MWh. Die Grafik verdeutlicht die Vorherrschaft von Heizöl- und elektrischen Heizsystemen.

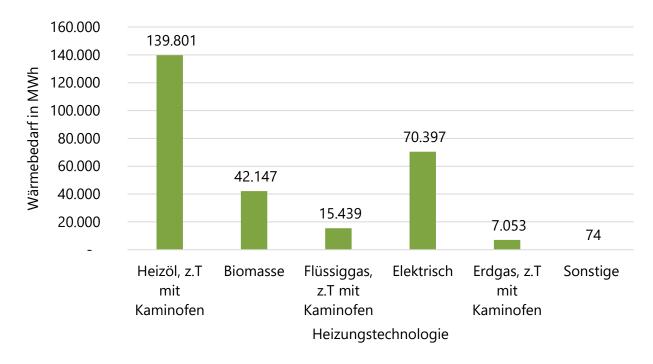


Abbildung 24: Wärmebedarf der dezentralen Wärmeerzeuger

3.3.6 Emissionen

Abbildung 25 veranschaulicht die Verteilung der Treibhausgasemissionen (THG) nach Energieträgern in Kilogramm (kg). Heizöl ist der größte Verursacher von Emissionen und trägt mit 37 Mio. kg zu 54% der Gesamtemissionen bei. Heizstrom (oder sonstige) folgt mit 24,8 Mio. kg, was einem Anteil von 36% entspricht. Flüssiggas ist für 3,7 Mio. kg oder 6% der Emissionen verantwortlich. Erdgas und Biomasse tragen jeweils 2% der Gesamtemissionen bei, mit 1,5 Mio. kg bzw. 1,4 Mio. kg. Heizöl und Heizstrom sind somit die dominierenden Quellen für Treibhausgasemissionen in diesem Diagramm, während Flüssiggas, Erdgas und Biomasse deutlich geringere Anteile aufweisen.

THG je Energieträger in kg

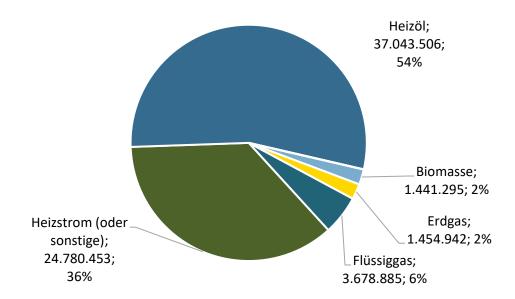


Abbildung 25: Treibhausgasemissionen (CO₂) nach Energieträger in kg

3.4 Kartografische Analysen

3.4.1 Gebäudetypen

Wie in Abbildung 26 dargestellt, besteht die Gebäudetypologie der Verbandsgemeinde Ruwer überwiegend aus freistehenden Einfamilienhäusern und Doppelhaushälften. Diese werden ergänzt durch kleinere Mehrfamilienhäuser mit 3 bis 6 Wohneinheiten, die vornehmlich in den äußeren Ortslagen zu finden sind.

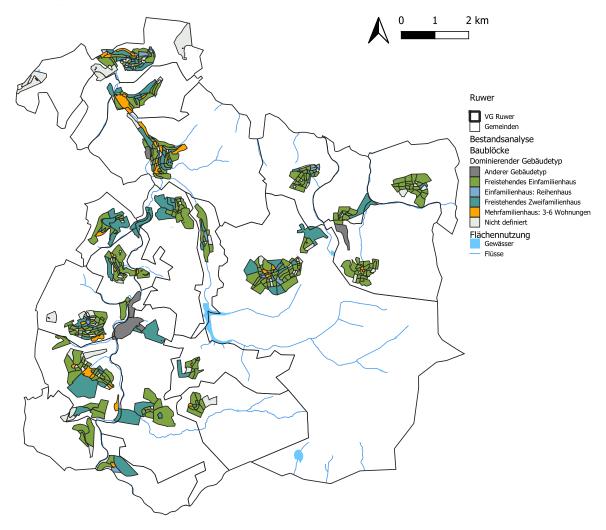


Abbildung 26: Dominierender Gebäudetyp nach Zensus-Typologie

3.4.2 Baualtersklassen

Abbildung 27 bietet eine kartographische Übersicht der Bestandsanalyse von Baublöcken in der Verbandsgemeinde Ruwer, wobei die dominierenden Baujahre der Gebäude und verschiedene Flächennutzungen farblich differenziert dargestellt sind. Zusätzlich sind in Abbildung 28 die Baualtersklassen nach Baublockebene dargestellt. Die Kartenansicht und das Diagramm zeigen, dass die meisten Baublöcke von der Baualtersklasse 1949 – 1978 dominiert werden.

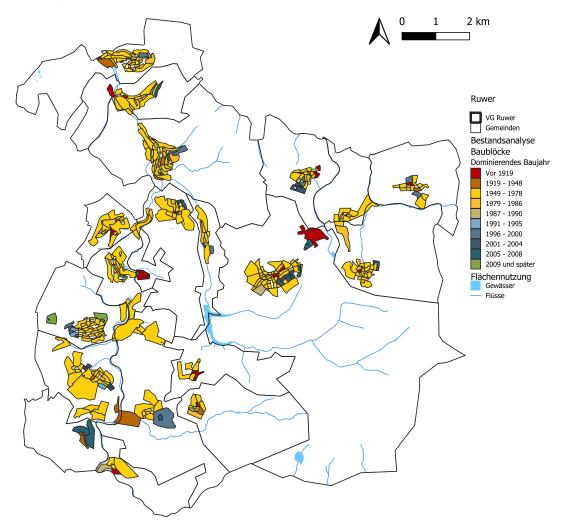


Abbildung 27: Dominierendes Baujahr eines Baublocks nach Zensus-Klassen

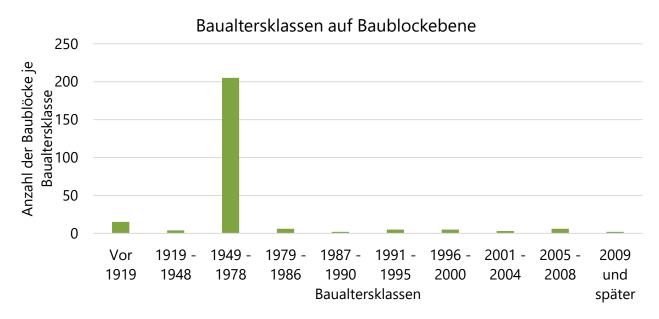


Abbildung 28: Baualtersklassen auf Baublockebene

3.4.3 Wärmeverbrauchsdichten

Abbildung 29 zeigt die Wärmeverbrauchsdichte der Baublöcke in der Verbandsgemeinde Ruwer, angegeben in Megawatt pro Hektar und Jahr (MW/ha·a). Die Werte reichen von etwa 1 MW/ha·a in den ländlicheren Gebieten mit geringer Bebauungsdichte bis zu etwa 1735 MW/ha·a in den stark bebauten Ortskernen. Hohe Werte in dicht bebauten Gebieten weisen auf einen hohen Wärmebedarf hin, während niedrige Werte in weniger dicht besiedelten Gebieten auf einen geringeren Bedarf schließen lassen. Diese Informationen sind nützlich für die Planung und Optimierung von Wärmeversorgungsnetzen, da sie helfen, Gebiete mit hohem Wärmebedarf zu identifizieren und gezielte Maßnahmen zur Verbesserung der Energieeffizienz und Versorgungssicherheit zu entwickeln.

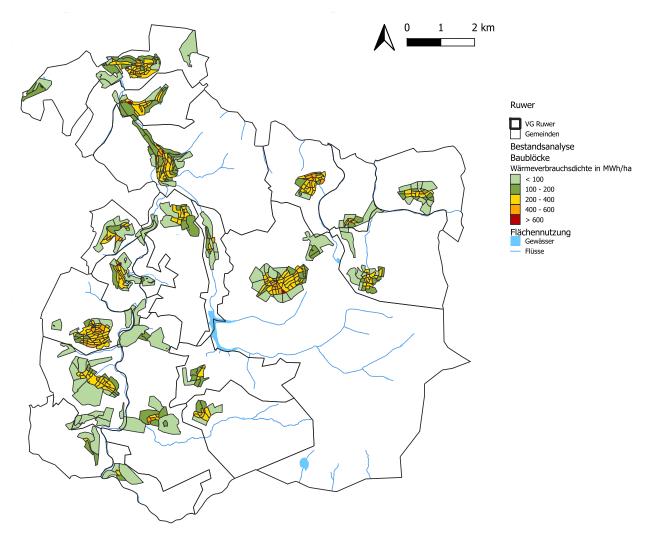


Abbildung 29: Wärmeverbrauchsdichte in MWh/ha a

3.4.4 Wärmeliniendichte

Abbildung 30 zeigt die Wärmeliniendichte entlang der Straßenabschnitte in der Verbandsgemeinde Ruwer. Die Wärmeliniendichte, angegeben in Kilowattstunden pro Meter (kWh/m), bietet eine detaillierte Übersicht über die Wärmeabgabe entlang der Straßen und gibt Aufschluss über die Wärmeintensität der jeweiligen Straßenabschnitte. Höhere Werte der Wärmeliniendichte deuten auf eine größere Wärmeabgabe hin, was auf eine intensivere Nutzung und einen höheren Energiebedarf in

diesen Bereichen hinweist. Diese Information ist besonders nützlich, um die Eignung der verschiedenen Straßenabschnitte für den Ausbau von Wärmenetzen zu bewerten.

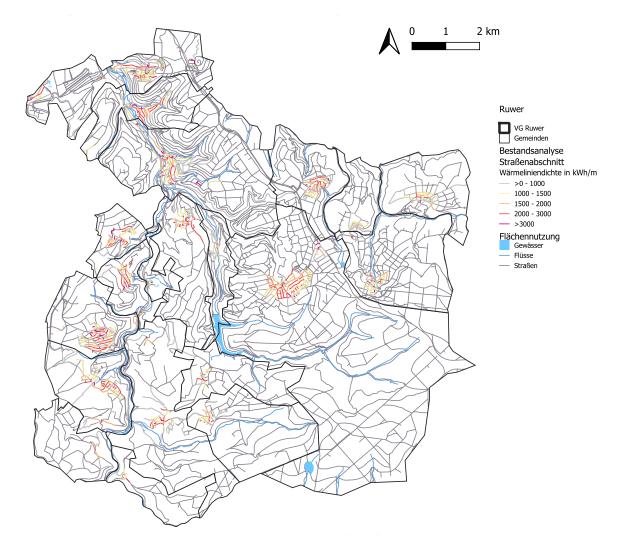


Abbildung 30: Wärmeliniendichte in der Verbandsgemeinde Ruwer in kWh/m

Die Abbildung 31 zeigt die Wärmeliniendichte beispielhaft in Waldrach.



Abbildung 31: Wärmeliniendichte in Waldrach

3.4.5 Wärmeerzeuger

Die Abbildung 32 bis Abbildung 35 zeigen für das Jahr 2024 die Anteile der Nutzung unterschiedlicher Energiequellen der Baublöcke. Abbildung 32 zeigt die Bebauung mit einem hohen Anteil an Heizöl. Die dunklen Bereiche markieren Regionen mit einer höheren Konzentration von Heizölnutzung, während die helleren Bereiche weniger Heizölnutzung anzeigen. Die Abbildung 33 stellt die Verteilung der elektrischen Heizsysteme und sonstiger Energiequellen dar. Die Abbildung 34 zeigt die Nutzung von Biomasse als Energiequelle. Abbildung 35 veranschaulicht die Verteilung von Erdgas inklusive Flüssiggasnutzung. Zusammen geben diese Grafiken einen umfassenden Überblick über die Energieversorgungsstruktur in der Verbandsgemeinde und zeigen, wie verschiedene Energiequellen räumlich verteilt sind.

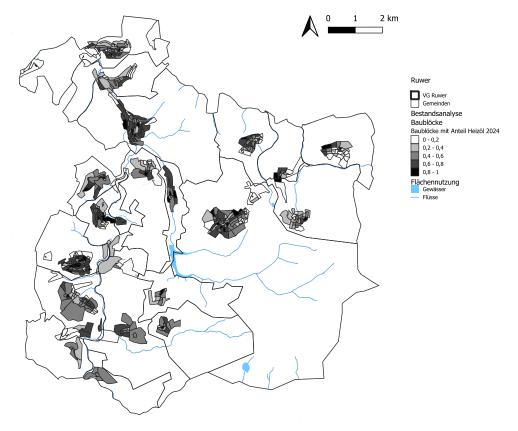


Abbildung 32: Anteil des Verbrauchs an Heizöl für den Wärmebedarf je Baublock

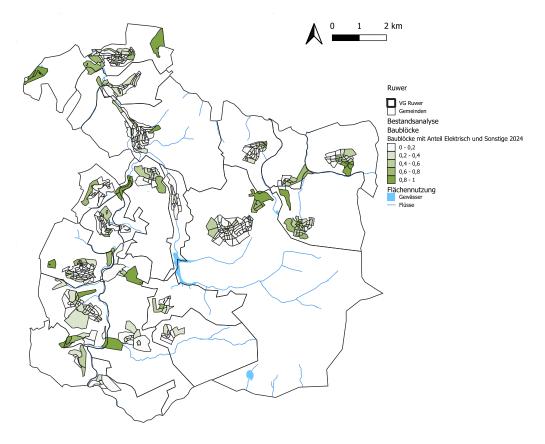


Abbildung 33: Anteil des Verbrauchs an elektrischen und sonstigen Wärmeerzeugern für den Wärmebedarf je Baublock

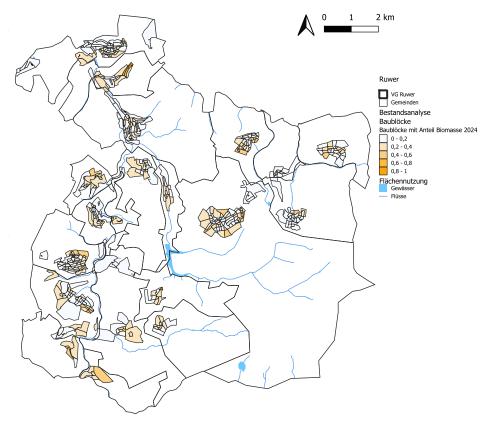


Abbildung 34: Anteil des Verbrauchs an Biomasse für den Wärmebedarf je Baublock

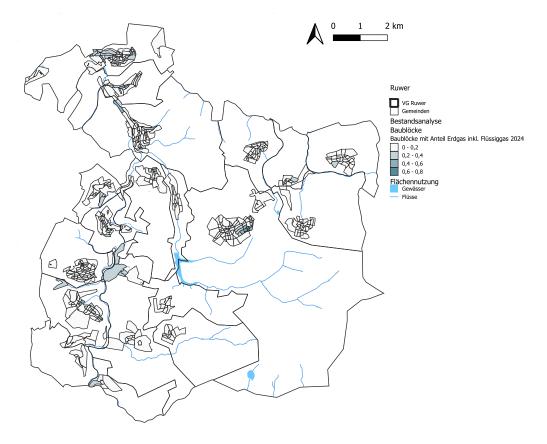


Abbildung 35: Anteil des Verbrauchs an Gas für den Wärmebedarf je Baublock

3.5 Gasnetz

Abbildung 36 zeigt die Verfügbarkeit von Gasanschlüssen in der Verbandsgemeinde. Die roten Flächen in der Abbildung kennzeichnen die Baublöcke mit vorhandenen Anschlüssen. Weite Teile der Ortsgemeinden Mertesdorf und Kasel sind an das regionale Verbundnetz der Stadtwerke Trier angeschlossen. Diese Netze sollen nach Angaben des Netzbetreibers zukünftig verstärkt mit grünen Gasen wie Biomethan oder Wasserstoff gespeist werden.

Darüber hinaus bestehen in ehemaligen Neubaugebieten der Ortsgemeinden Gutweiler, Pluwig, Osburg und Waldrach lokale Inselnetze, die jeweils über einen dezentralen Tank gespeist werden. Da der Energieträger Wasserstoff nicht in ausreichenden Mengen in den vorhandenen Tanks gespeichert werden kann, sind solche Mikronetze perspektivisch auf die Integration anderer grüner Gase angewiesen. Ein wirtschaftlicher Weiterbetrieb dieser Netze ist daher unsicher.

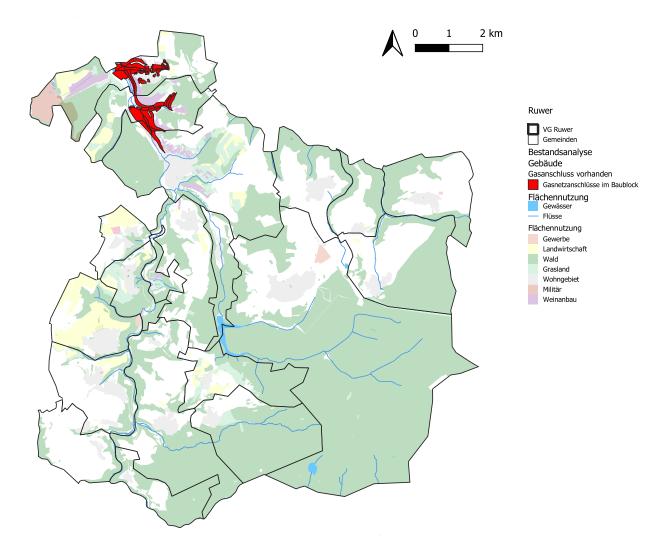


Abbildung 36: Gasnetzanschlussverfügbarkeit nach Baublöcken

3.6 Wärmenetz

In der Verbandsgemeinde Ruwer gibt es im Status quo keine Wärmenetze.

4 Potenzialanalyse

4.1 Allgemeines

Die Potentialanalyse bildet einen entscheidenden Schritt in der kommunalen Wärmeplanung der Verbandsgemeinde Ruwer. Auf der Basis der vorhergehenden Bestandsanalyse, die den aktuellen Wärmebedarf und die bestehende Infrastruktur der Region untersucht hat, konzentriert sich die Potentialanalyse auf die Identifikation und Bewertung von Möglichkeiten zur Nutzung erneuerbarer Energiequellen. Ziel dieser Analyse ist es, Potenziale für eine nachhaltige und effiziente Wärmeversorgung aufzuzeigen und so die Grundlage für die zukünftige Energieversorgung der Verbandsgemeinde zu schaffen.

In diesem Kapitel werden die unterschiedlichen Potenziale für erneuerbare Energien in der Verbandsgemeinde Ruwer untersucht und bewertet. Die Analyse umfasst verschiedene Technologien und Energiequellen, darunter solare Potentiale wie PV auf Freiflächen und Floating PV, sowie die Nutzung von Solarthermie auf Dachflächen. Darüber hinaus werden Möglichkeiten zur Energiegewinnung aus Biomasse und Abwasser betrachtet und die geothermische Eignung der Region analysiert. Die Bewertung dieser Potenziale ermöglicht es, die energetischen Ressourcen der Region umfassend zu erfassen und gezielt Maßnahmen für eine nachhaltige Wärmeversorgung zu entwickeln.

4.2 Solare Potenziale

Die solaren Potenziale lassen sich nach dem Ort der Installation in Module auf Dächern und Module auf Freiflächen unterteilen. Freiflächen PV bezieht sich auf die Installation von Solarmodulen auf offenen Landflächen, wie z. B. brachliegendem Land, landwirtschaftlichen Flächen oder speziell dafür vorgesehenen Solarparks. Abbildung 37 zeigt das Potenzial für Freiflächen PV in der Region. Das Gesamtenergiepotenzial der Freiflächen in der Verbandsgemeinde Ruwer beläuft sich auf 5.058.523 MWh.

Eine Potenzialstudie der VG Ruwer aus dem Jahr 2023 hat ergeben, dass insgesamt 830 ha Freiflächen in der VG für die Installation von PV-Modulen geeignet sind. Um die Flächenbeanspruchung auf ein verträgliches Maß zu begrenzen, wurden zunächst die Installation von insgesamt 144 Hektar reine Modulfläche beschlossen. Dies entspricht einer installierbaren Leistung von 141 MWp sowie einem jährlichen Stromertrag von bis zu 138.240 MWh bei 960 kWh/kWp [15]

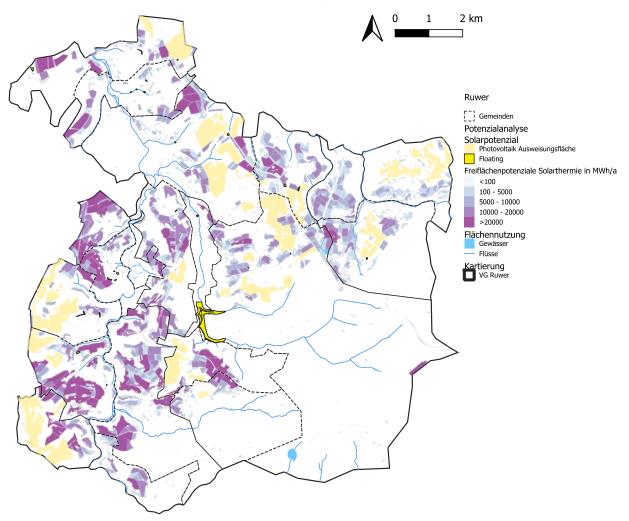


Abbildung 37: Potenziale für Freiflächen Anlagen der Verbandsgemeinde Ruwer in GWh/a

Solarthermie und Photovoltaik auf Dachflächen bieten weitere signifikante Potenziale zur Energieerzeugung in der Verbandsgemeinde Ruwer. Diese wurden ebenfalls betrachtet, werden allerdings aufgrund des Datenschutzes nicht gebäudescharf dargestellt.

4.3 Geothermie

Etwa 45 km² der Fläche in der Verbandsgemeinde Ruwer sind für Geothermie nur bedingt geeignet. Von der insgesamt verfügbaren Fläche von 127 km² bleiben somit rund 82 km², also etwa 60 % der Gesamtfläche, für potenzielle Geothermie-Anwendungen übrig. Abbildung 38 veranschaulicht die geographische Verteilung der geothermisch geeigneten Flächen. In den Talsohlen bzw. -einschnitten befinden sich Ausschlussgebiete bzw. Gebiete die weniger geeignet sind. Dies liegt daran, dass gewässernaher Boden besonders geschützt wird und Verunreinigungen und ähnliches vermieden werden soll. Es kann jedoch meist trotzdem mit den unteren Wasserbehörden Kontakt aufgenommen werden und ggf. eine positive Einzelfallentscheidung herbeigeführt werden. Zudem befinden sich 5.731 von rund 8.200 Gebäuden in grundsätzlich für Geothermie geeigneten Flächen und bieten somit potenziell die Voraussetzung zur Nutzung von erdwärmesondengekoppelte Wärmepumpen.

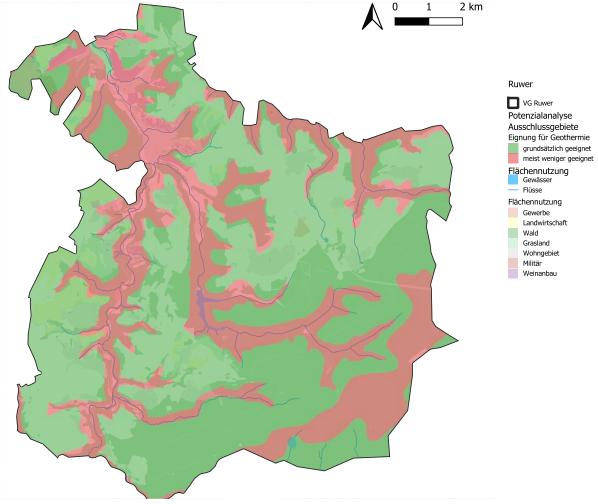


Abbildung 38: Ausschluss- und Eignungsgebiete für Geothermie

4.4 Gewässer

4.4.1 Seethermie

Die Nutzung von Wärme aus Gewässern mittels Wärmepumpen bietet bei ausreichenden Wassermengen ein bedeutendes Potenzial zur nachhaltigen Wärmebereitstellung. Gewässer haben gegenüber anderen Wärmequellen wie der Außenluft oder dem Erdreich Vorteile. Aufgrund ihrer konstanten Wassertemperatur und des kontinuierlichen Wasserflusses kann Wärme effizient entzogen werden, da die Temperatur des Wassers über das Jahr relativ stabil bleibt.

Die technologische Grundlage für Wärmepumpen an Fließgewässern ist grundsätzlich entwickelt. Die Technik ist bereits in verschiedenen Projekten erfolgreich eingesetzt worden, z.B. in Deutschland und der Schweiz. Bei der Wärmepumpe wird die Wärme des Flusswassers genutzt, indem ein Wärmetauscher die Energie aufnimmt und mit Hilfe elektrischer Energie auf ein höheres Temperaturniveau für die Gebäudeheizung gebracht wird.

Der Betrieb solcher Anlagen hängt stark von den lokalen Gewässerbedingungen ab, wie der Wasserdurchflussmenge und der Wassertemperatur. Umweltauswirkungen sind dabei besonders relevant. Dabei kann die Kühlung des Flusswassers jedoch insbesondere im Sommer einen positiven Effekt haben, insbesondere angesichts steigender Wassertemperaturen durch den Klimawandel. Dennoch

müssen wasserrechtliche Genehmigungen für solche Eingriffe eingeholt werden, die festlegen, wie stark das Wasser abgekühlt werden darf.

Die Wärmenutzung der Riveristalsperre, speziell im Zusammenhang mit Wärmenetzen, kann eine Rolle spielen, wenn es darum geht, die thermische Energie des Wasserspeichers für Heizzwecke zu nutzen. Es gibt ein zunehmendes Interesse an der Nutzung von natürlichen oder künstlichen Gewässern zur Wärmegewinnung, z. B. durch die Verwendung von Wärmepumpen, die die Temperatur des Wassers ausnutzen, um Gebäude oder Netzwerke zu heizen oder zu kühlen. In diesem Szenario würde das Wasser der Riveristalsperre als Medium für den Wärmeentzug dienen, um über ein Verteilnetz an angeschlossene Häuser oder Industrieanlagen Wärme abzugeben.

Insgesamt sind Wärmenetze, die auf der Energie von Wasserspeichern basieren, in Deutschland eine aufstrebende Technologie. Sie könnten in Zukunft auch für die Riveristalsperre von Interesse sein, falls die technischen Voraussetzungen und der Bedarf vorhanden sind.

4.4.2 Fließgewässer

Neben der Seethermie bieten Fließgewässer wie die Ruwer in der Verbandsgemeinde ein bedeutendes Potenzial zur nachhaltigen Wärmebereitstellung. Wärmepumpen, die an Fließgewässern installiert werden, nutzen die Wärmeenergie des Wassers und wandeln sie mittels elektrischer Energie in nutzbare Heizwärme um. Durch den konstanten Wasserfluss der Ruwer könnte eine kontinuierliche und zuverlässige Wärmequelle erschlossen werden.

Das thermische Potenzial der Ruwer in Kasel kann anhand ihres durchschnittlichen Durchflusses grob abgeschätzt werden. Über die letzten vier Jahre lag dieser bei 3,3 m³/s. Mithilfe einer einfachen Berechnung unter Berücksichtigung einer Abkühlung des Flusswassers um 1°C und der spezifischen Wärmekapazität von Wasser ergibt sich ein jährliches thermisches Potenzial von etwa 15,1 GWh. Diese Berechnung geht von einem Entnahmeanteil von 1/8 des Durchflusses aus, was eine konservative Schätzung darstellt, da Umweltauflagen und technische Einschränkungen in der Regel verhindern, dass der gesamte Durchfluss genutzt wird. Der tatsächliche Durchfluss schwankt im Jahresverlauf stark. So kann er in den Wintermonaten bei Hochwasser bis zu 30 m³/s erreichen, während er in den Sommermonaten bis auf 0,1 m³/s sinken kann. Gerade in den Wintermonaten, wenn der Durchfluss der Ruwer tendenziell höher und konstanter ist, fällt dies mit dem höchsten Wärmebedarf zusammen, was die Flusswärme besonders in dieser Zeit zu einer vielversprechenden Energiequelle macht.

Die Effizienz der Wärmepumpensysteme hängt stark von den lokalen Gegebenheiten und den umweltrechtlichen Rahmenbedingungen ab. Es ist entscheidend, dass durch die Energieentnahme keine negativen Auswirkungen auf das Ökosystem der Ruwer entstehen. Daher wären Umweltgutachten und Genehmigungen erforderlich, die sicherstellen, dass das Flusswasser nur moderat abgekühlt wird, um die natürlichen Prozesse des Gewässers nicht zu beeinträchtigen.

Trotz der technischen und regulatorischen Herausforderungen bietet die Ruwer als Wärmequelle ein beträchtliches Potenzial. Besonders in Verbindung mit bestehenden oder geplanten Infrastrukturen zur Energiegewinnung könnte die Flusswärme der Ruwer zu einer Reduktion von CO₂-Emissionen beitragen und den Anteil erneuerbarer Energien in der kommunalen Wärmeversorgung steigern.

Weitere Studien und Machbarkeitsanalysen sind notwendig, um das exakte Potenzial und die Umweltauswirkungen vollständig zu ermitteln.

4.5 Biomasse

Die Analyse der Biomassequellen in der Verbandsgemeinde Ruwer zeigt, dass eine relevante Menge an Energie aus Biomasse gewonnen werden kann. Dazu wurden die Potenziale aus dem Naumesund Backeshof analysiert. Tabelle 5 fasst die wichtigsten Daten zu den Biomassequellen, ihrem Methanertrag und der resultierenden Energieproduktion zusammen.

Tabelle 5: Biomassequellen und Energieerträge in der Verbandsgemeinde Ruwer

Biomassequelle	Meng	e Methaner- trag	Methanproduktion (Nm³)	Energieproduktion (kWh)
Rindergülle	4500 m³	17,0 Nm³/m³	76.500	765.000
Mist	600 t	66,1 Nm³/t	39.643	396.429
Futterabfälle	100 t	100 Nm³/t	10.000	100.000
Gesamt	-	-	126.143	1.261.429

In der Verbandsgemeinde Ruwer wurden folgende Biomassequellen erfasst:

- Rindergülle: Diese Quelle stellt mit 4500 m³ und einer Energieproduktion von 765.000 kWh die größte Biomassequelle dar. Dies zeigt das erhebliche Potenzial von landwirtschaftlichen Abfällen zur Energieerzeugung.
- Mist: Mit einer Energieproduktion von 396.429 kWh aus 600 t ist Mist eine weitere bedeutende Biomassequelle.
- Futterabfälle: Trotz der geringeren Menge von 100 t tragen Futterabfälle mit 100.000 kWh ebenfalls zur Gesamtenergieproduktion bei.

Die Gesamtenergieproduktion aus Biomasse in der Verbandsgemeinde Ruwer beträgt 1.261.429 kWh. Dies zeigt das bedeutende Potenzial der Nutzung von Biomasse zur nachhaltigen Wärme- und Energieversorgung. Durch die Nutzung dieser Biomassequellen kann ein wesentlicher Beitrag zur Reduktion der CO₂-Emissionen und zur Energieunabhängigkeit geleistet werden.

4.6 Abwasser

4.6.1 Abwassernetz

Die Analyse des Trockenwetterabflusses in der Verbandsgemeinde Ruwer bietet wertvolle Informationen für die Wärmeplanung. Der kontinuierliche, niederschlagsunabhängige Abwasserabfluss stellt eine zeitlich konstante und planbare Wärmequelle dar. Dabei weist das Abwasser ganzjährig stabile Temperaturen auf, die über Wärmetauscher genutzt werden können. Hierfür ist ein entsprechend großer Volumenstrom erforderlich, weshalb die Lage und Dimensionierung wichtige Kriterien darstellen. Abbildung 39 veranschaulicht die Verteilung des Abwassers der einzelnen Ortsgemeinden.

In der Verbandsgemeinde Ruwer laufen die Kanäle des oberen Ruwertals sowie der Hochwaldgemeinden Osburg und Thomm in der Ortsgemeinde Waldrach zusammen. Darüber hinaus werden zukünftig auch die Abwässer der Gemeinden Farschweiler, Herl und Lorscheid im Zuge der

Stilllegung der Teichkläranlagen zufließen. Aufgrund des stabilen Volumenstroms wurde für die Ortsgemeinde Waldrach eine Studie zur Nutzung von Abwasserwärme in Auftrag gegeben, die die Eignung dieser nachhaltigen Wärmequelle bestätigt. Die Studie zeigt, dass durch den konstanten Abfluss das Abwasser ein verlässliches Potenzial zur Wärmegewinnung bietet. Da die Abwassermenge in den benachbarten Gemeinden Kasel und Mertesdorf weiter zunimmt, liegt auch dort ein nutzbares Potenzial im Abwasser vor. Mögliche Synergien zwischen den einzelnen Projekten in der Region müssten jedoch genau abgestimmt und koordiniert werden, um eine effiziente und nachhaltige Nutzung zu gewährleisten.

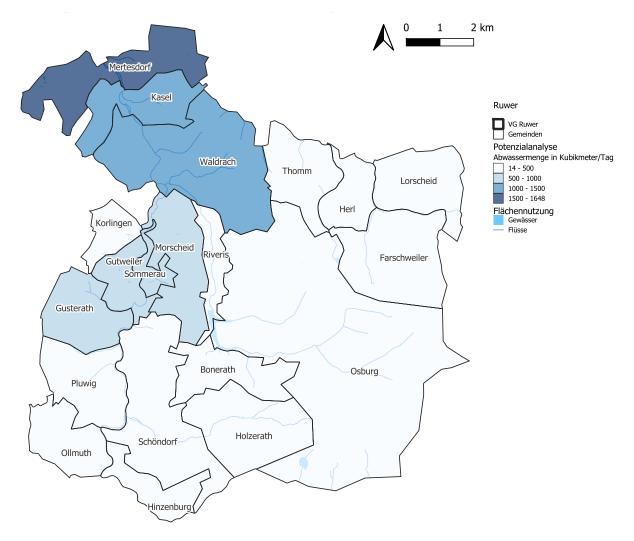


Abbildung 39: Trockenwetterabfluss der Gemeinden in Liter pro Tag

4.6.2 Bestehende Studie zur Abwasserwärmenutzung

Im Jahr 2023 wurde eine Machbarkeitsstudie mit dem Thema: "Errichtung einer Abwasserwärmenutzungsanlage zur Nahwärmeversorgung für die Ortsgemeinde Waldrach" abgeschlossen. Dabei war es das Ziel die Errichtung einer Nahwärmeversorgung mit der Abwärme aus dem Kanal zu untersuchen. Es wurden dabei die Abwassermengen in der VG Ruwer untersucht und auf 25 bis 30 Liter pro Sekunde geschätzt.

Die Untersuchung fokussierte sich auf den Bereich um den Transportsammler Welschmühle in Waldrach. In diesem Gebiet befinden sich neben Einfamilienhäusern eine Kindertagesstätte, ein

Gemeindezentrum, das Verwaltungsgebäude der Verbandsgemeinde sowie ein neu errichtetes Seniorenzentrum. Diese größeren Liegenschaften wurden im Rahmen der Studie auch dahingehend analysiert, ob sich ihre Heizungen im System zur Deckung von Spitzenlasten integrieren lassen. Für die Abdeckung der Spitzenlast sollen die vorhandenen Pelletheizungen der KiTa Waldrach und der Verbandsgemeindeverwaltung genutzt werden.

Insgesamt soll dem Abwasser mittels Wärmetauscher eine Wärmeleistung von 300 kW entzogen werden. Durch den Einsatz einer Wärmepumpe kann diese Energie effizient auf ein höheres Temperaturniveau gebracht werden. Dadurch können rund 3,5 GWh Wärme pro Jahr bereitgestellt werden. Dem Projekt wird dabei eine Wirtschaftlichkeit unterstellt.

4.6.3 Kläranlagen

In der Verbandsgemeinde Ruwer spielen Kläranlagen eine potenzielle Rolle bei der Bereitstellung von Abwärme für kommunale Wärmenetze. Derzeit befinden sich zwei Teichkläranlagen in Farschweiler und Lorscheid, die jedoch zurückgebaut werden sollen. Stattdessen wird das Einzugsgebiet dieser Anlagen an das Klärwerk Ruwertal angeschlossen, das sich direkt hinter der Grenze von Metesdorf befindet und somit weiterhin für die Verbandsgemeinde Ruwer von Bedeutung ist.

Eine bereits vorhandene Potenzialstudie zur Abwasserbehandlungsanlage der Kläranlage Ruwertal, zeigt, dass ein erhebliches Abwärmepotenzial vorhanden ist. Die Studie gibt eine ungenutzte Abwärme von 1.467 kW an, was einer jährlichen Wärmeenergie von 12,8 GWh entspricht. Auch wenn nur ein Teil dieser Wärme genutzt werden könnte, stellt dies dennoch ein signifikantes Potenzial dar. Besonders interessant ist das nahegelegene Freibad Ruwertal, das in der Studie als potenzieller Abnehmer der Abwärme genannt wird.

4.7 Wärme- und Gasspeicher

In der Verbandsgemeinde Ruwer sind gegenwärtig keine Wärmespeicher vorhanden. Gasspeicher sind lediglich in geringeren Dimensionen von ca. 32.500 I in den Quartieren der Ortsgemeinden Gusterath, Pluwig, Osburg und Waldrach sowie kleinere Speicher im privaten Bereich vorhanden.

4.8 Anlagen für H₂ oder synthetische Gase

In der Verbandsgemeinde Ruwer sind im Status quo keine Anlagen für H₂ oder synthetische Gase vorhanden.

4.9 Industrielle Abwärme

Industrielle Abwärme entsteht in Produktionsprozessen, bei denen nicht die gesamte erzeugte Energie effizient genutzt wird und überschüssige Wärme freigesetzt wird. Diese Abwärme kann direkt für die internen Zwecke eines Unternehmens verwendet oder – bei ausreichender Menge – in ein Wärmenetz eingespeist werden, um benachbarte Gebäude oder Infrastrukturen zu versorgen.

In der VG Ruwer wurden lokale Unternehmen befragt, ob sie industrielle Abwärme in relevanten Mengen produzieren, die für die Einspeisung in ein kommunales Wärmenetz infrage käme. Aus den Rückmeldungen der Unternehmen hat sich jedoch kein Betrieb herauskristallisiert, der eine ausreichende Menge an Abwärme zur Verfügung stellen könnte, um das Wärmenetz zu unterstützen.

Trotzdem besteht ein Potenzial darin, die produzierte Abwärme für die interne Nutzung der Betriebe zu verwenden. Kleinere Unternehmen, die zwar nicht genügend Abwärme für eine externe Einspeisung generieren, könnten diese jedoch effizient nutzen, um beispielsweise ihre eigenen Bürogebäude, Produktionshallen oder Lagerräume zu beheizen. Dies könnte die Energiekosten der Betriebe senken und gleichzeitig zur Ressourcenschonung beitragen. Die Möglichkeit, überschüssige Abwärme intern sinnvoll zu verwenden, bleibt somit ein relevanter Faktor für die Energieeffizienz in der Verbandsgemeinde Ruwer.

4.10 Zusammenfassung der Potenziale

In der Verbandsgemeinde Ruwer bieten sich verschiedene Potenziale für die Nutzung erneuerbarer Energien, die in Abbildung 40 dargestellt sind. Die Biomasse-Ressourcen, die an den Standorten Backeshof, Farschweiler/Herl und Naumeshof, Morscheid erschlossen werden könnten, haben ein Energiepotenzial von bis zu 1,8 GWh. Dies bietet eine solide Basis für die nachhaltige Nutzung von Biomasse in der Region. Solarthermie stellt eine besonders vielversprechende Option dar, da auf Freiflächen ein Potenzial von bis zu 5.000 GWh erschlossen werden kann. Dies unterstreicht die Bedeutung der Solarthermie für die Wärmeversorgung in der Verbandsgemeinde.

Ein weiteres Potenzial zeigt sich in der Seethermie, insbesondere an der Talsperre Riveris, wo ein geschätztes Potenzial von mehr als 12 GWh besteht. Diese Ressource könnte signifikant zur Wärmeversorgung beitragen und unterstreicht somit die Bedeutung der Solarthermie für die Wärmeversorgung in der Verbandsgemeinde. Auch die Fließgewässer insbesondere die Ruwer weisen ein Potenzial auf. Das geschätzte Potenzial liegt hier bei 15,1 GWh. Die geothermische Energie hat in der Region ebenfalls großes Potenzial. Während detaillierte Daten fehlen, deutet eine Bohrungstiefe von etwa 100 Metern auf ein mögliches Energiepotenzial von etwa 7 MWh hin, was die Eignung der Region für geothermische Anwendungen bestätigt.

Zusätzlich kann Abwasser in den Orten Waldrach und Mertesdorf genutzt werden, mit einem Energiepotenzial von bis zu 3,4 GWh. Diese Nutzungsmöglichkeiten erweitern die Optionen für eine nachhaltige Energieversorgung und ergänzen die verfügbaren erneuerbaren Energiequellen in der Verbandsgemeinde Ruwer. Insgesamt zeigen diese Potenziale eine breite Basis für die Entwicklung und Implementierung erneuerbarer Energieprojekte in der Region, die zu einer nachhaltigen und zukunftsfähigen Wärmeversorgung beitragen können.

		WWW III	Energy Consulting
Quelle	Solarthermie	Seethermie	Fließgewässer
Ort	Freifläche an vielen Stellen In der VG	Talsperre Riveris	Insbesondere Ruwer (Fluss)
Energie	Bis zu 5.000 GWh	Ggf. > 12 GWh	Bis zu 15,1 GWh
Beispiel- bild			
Quelle	Biomasse	Geothermie	Abwasser
Ort	Backeshof und Naumeshof	Viele Eignungsgebiete	Waldrach/Mertesdorf
Energie	Bis zu 1,8 GWh	Detaillierte Daten fehlen, ggf. ca. 7 MWh je Bohrung (ca. 100 m)	Bis zu 3,4 GWh
Beispiel- bild			

Abbildung 40: Übersicht der Potenziale

5 Entwicklung der Zielszenarien

5.1 Allgemeines

Im Anschluss an die Bestands- und Potenzialanalyse wird die Entwicklung des Zielszenarios für eine (möglichst) klimaneutrale Wärmeversorgung durchgeführt. Dazu wird die Ausnutzung der ermittelten Potenziale für Energieeinsparung und erneuerbare Energien in einer Energie- und Treibhausgasbilanz nach Sektoren und Energieträgern dargestellt. Außerdem erfolgt eine räumlich aufgelöste Beschreibung der dafür benötigten zukünftigen Versorgungsstruktur. Insbesondere soll eine Einteilung in Eignungsgebiete für Wärmenetze und dezentrale Einzelversorgung erfolgen.

Die Untersuchung erfolgt unter Berücksichtigung der jeweils aktuell gültigen THG-Minderungsziele der Bundesregierung einschließlich einer räumlich aufgelösten Beschreibung der dafür erforderlichen Energieeinsparungen, der zukünftigen Versorgungsstruktur sowie der damit verbundenen Kostenprognosen. Die Analyse wird in Form von Wärmevollkostenvergleichen für eine Anzahl typischer Versorgungsfälle durchgeführt. Dabei werden sowohl Einzelheizungen als auch eine Versorgung mit Fernwärme berücksichtigt.

Es werden folgende Aspekte berücksichtigt: Plausible / transparente Annahmen zur Entwicklung der Energieträgerpreise auf Basis aktueller Studien, Berücksichtigung der CO₂-Bepreisung, Entwicklung des Wärmeenergiebedarfs durch Neubau, Verdichtung und Gebäudesanierung.

Biomasse und nicht-lokale Ressourcen sind effizient und ressourcenschonend sowie nach Maßgabe der Wirtschaftlichkeit nur dort in der Wärmeversorgung einzuplanen und einzusetzen, wo vertretbare Alternativen fehlen. Für die Nutzung von nicht-lokalen Ressourcen wird dargelegt, welche Umweltund Klimaauswirkungen dies zur Folge hat und welche ökonomischen Vorteile und Risiken sich für die Verbraucher im Vergleich zu Alternativen auf Basis lokaler erneuerbarer Energien (Wärmevollkosten inkl. Infrastrukturbeitrag) ergeben und wie die Versorgung infrastrukturell sichergestellt werden kann (z. B. Anbindung an Wasserstofftransport- und -verteilnetz).

Es wurden zudem Fokusgebiete identifiziert, die bezüglich einer klimafreundlichen Wärmeversorgung kurz- und mittelfristig prioritär zu behandeln sind. Für diese Fokusgebiete werden zusätzlich konkrete, räumlich verortete Umsetzungspläne erarbeitet. Dabei wurden sämtliche betroffene Verwaltungseinheiten an der Entwicklung der Zielszenarien und Entwicklungspfade sowie der umzusetzenden Maßnahmen beteiligt.

5.2 Technologiewechsel

Die Technologiewechsel der Heizung sind von verschiedenen Faktoren abhängig. Ein wesentlicher Aspekt ist die Machbarkeit im Gebäude sowie der Aufwand einer Umrüstung, insbesondere im Hinblick auf notwendige Sanierungsmaßnahmen, Vorlauftemperaturen und den benötigten Platz. Weiterhin spielen die Investitions- und Betriebskosten der neuen Technologie eine entscheidende Rolle, wobei auch mögliche Förderungen berücksichtigt werden müssen. Das Alter und der Zustand der bestehenden Heizungsanlagen beeinflussen ebenfalls den Zeitpunkt des Wechsels, da ältere oder defekte Anlagen eher ausgetauscht werden müssen. Ein weiterer wichtiger Faktor ist die Verfügbarkeit von Netzinfrastruktur, die notwendig ist, um die neue Technologie effizient betreiben zu können. Die Verfügbarkeit und Lieferzeit von Anlagen sowie die Verfügbarkeit von Fachkräften sind ebenfalls

von Bedeutung, da sie den zeitlichen Rahmen und die Durchführbarkeit der Umrüstung bestimmen. Schließlich müssen auch gesetzliche Vorgaben beachtet werden, wie etwa Verbote von Ölheizungen, die den Wechsel auf andere Heiztechnologien erzwingen können.

Zusammengefasst sind Technologiewechsel der Heizung abhängig von folgenden Faktoren:

- Machbarkeit im Gebäude bzw. Aufwand einer Umrüstung (insbesondere durch Sanierung, Vorlauftemperaturen, Platz)
- Investitions- und Betriebskosten (inkl. Förderungen) der neuen Technologie
- Alter bzw. Zustand der Heizungsanlagen (Einfluss auf den Wechselzeitpunkt)
- Verfügbarkeit von Netzinfrastruktur
- Verfügbarkeit, Lieferzeit von Anlagen sowie Fachkräfteverfügbarkeit
- Gesetze (Verbote von z. B. Ölheizungen)

5.2.1 Versorgungsoptionen für das Zieljahr

Grundsätzlich gibt es mehrere denkbare Optionen, die für die Wärmeversorgung in Ruwer infrage kommen. Das Venn-Diagramm in Abbildung 41 zeigt die Eignung von Gebäuden für verschiedene Wärmetechnologien und deren Verbreitung. Es illustriert die Menge der Gebäude, die für jede Technologie geeignet sind, und zeigt Überschneidungen zwischen den Technologien.

Fossile Heizungen, wie Gas- oder Ölheizungen, sind in der Regel in jedem Bestandsgebäude möglich. Das bedeutet, dass diese Technologie weit verbreitet und universell einsetzbar ist. Wärmepumpen sind in vielen Gebäuden nutzbar, insbesondere nach einer Sanierung. Sie bieten eine flexible und umweltfreundliche Heizlösung. Wärmenetze sind in gewissen Gebieten möglich, insbesondere in dichter besiedelten oder zentralen Bereichen, wo eine zentrale Wärmequelle effizient genutzt werden kann. Hybrid-Heizungen, die sowohl Wärmepumpen als auch andere Wärmequellen kombinieren, wären in vielen Gebäuden möglich und bieten eine flexible Lösung für verschiedene Bedarfssituationen. Biomasseheizungen stellen eine dezentrale Alternative dar, die besonders im ländlichen Raum relevant ist. Sie nutzen organische Materialien zur Wärmeerzeugung.

Das Diagramm zeigt auch die Überschneidungen zwischen den Technologien. Zum Beispiel können sowohl Wärmepumpen als auch Hybrid-Heizungen in vielen Fällen eine Option darstellen. Auch die Kombination von Wärmepumpen mit Wärmenetzen kann sinnvoll sein, wo die Infrastruktur dies zulässt. Insgesamt verdeutlicht das Diagramm die Vielfalt der verfügbaren Wärmetechnologien und die Notwendigkeit, je nach Gebäudetyp und Standort die passende Lösung zu wählen.

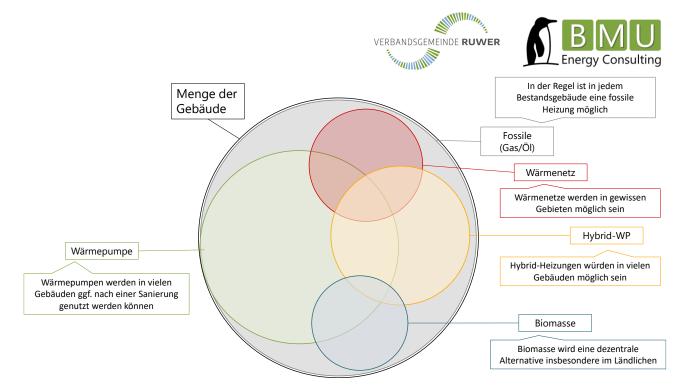


Abbildung 41: Lösungsraum der Wärmetechnologien

5.2.2 Technologiepriorisierung

Abbildung 42Das Flussdiagramm Abbildung 42 bietet eine Übersicht über verschiedene Optionen zur Wärmeversorgung und deren Eignung unter verschiedenen Bedingungen. Es behandelt die Auswahl zwischen Wärmepumpen, Wärmenetzen, Hybridlösungen, Biomasse, Wasserstoff und fossilen Brennstoffen. Hier ist eine detaillierte Beschreibung der dargestellten Optionen und Entscheidungswege:

Wärmepumpen und Wärmenetze: Die elektrische Wärmepumpe wird aufgrund der Nutzung aus Umweltwärme und elektrischer Energie als ideal für den Eigenbedarf betrachtet. Sie bietet höchste Flexibilität hinsichtlich der Nutzung von Stromquellen (z.B. Nutzung eigener PV-Stromerträge). Bei Gebäuden, die saniert werden oder bereits über eine Wärmepumpe verfügen, ist diese Lösung vorzuziehen. Der Grundsatz lautet, dass, wenn Wärmepumpen vor Ort möglich sind, diese priorisiert werden sollten. Wärmenetze sind in hochdichten Gebieten effektiv. Sie sind sinnvoll, wenn eine Versorgung über individuelle Wärmepumpen nicht möglich oder wirtschaftlich sinnvoll ist. Falls eine zentrale Wärmequelle verfügbar und wirtschaftlich ist, sollten Wärmenetze genutzt werden.

Hybride Systeme: Insbesondere bei Übergangslösungen für die nächsten 10 Jahre kann auch eine Hybridwärmepumpe in Betracht gezogen werden. Der Vorteil besteht darin, dass diese weniger Restriktionen aufweisen als die alleinige Wärmepumpe und flexibel je nach Bedarf auf Wärmepumpe, Wärmenetz oder andere Hybridwärmesysteme umgestellt werden kann.

Biomasse: Die Nutzung von Biomasse ist lediglich im Kontext der Reststoffverwertung unter Berücksichtigung spezifischer Voraussetzungen möglich. Sofern keine adäquate Wärmequelle verfügbar ist oder deren technische und ökonomische Realisierbarkeit nicht gegeben ist, ist sowohl die Nutzung von Biomasse als auch der Betrieb von Wärmenetzen nicht wirtschaftlich darstellbar.

Wasserstoff: Wasserstoff wird insbesondere an Industriestandorten mit entsprechender Infrastruktur eine wichtige Rolle einnehmen. Sofern die Netze vollständig oder teilweise auf den Transport von Wasserstoff umgerüstet werden, könnte die Nutzung von Wasserstoff über die Hybridheizungen als

Ergänzung dargestellt werden. Die bestehenden Fernleitungen in den Ortsgemeinden Kasel und Mertesdorf sind gemäß Aussagen des Netzbetreibers SWT für den Transport von Wasserstoff geeignet. Dem derzeit gelieferten reinen Erdgas sollen zukünftig vermehrt grüne Gase wie Wasserstoff oder Biogas beigemischt werden. Da sich die Wasserstoffproduktion im Landkreis aktuell auf kleinere Pilotanlagen beschränkt, ist eine dezentrale Versorgung mit Wasserstoff voraussichtlich bis auf weiteres nicht realisierbar.

Fossile Brennstoffe: Es wird empfohlen, den Einsatz fossiler Heizungen, insbesondere von Heizöl und Erdgas, zu vermeiden. Sollten sämtliche andere Optionen nicht verfügbar oder wirtschaftlich nicht realisierbar sein, können sie als ultima ratio dienen. Gemäß GEG ist der Neubau fossiler Heizungen ab 2024 nur noch unter der Voraussetzung zulässig, dass die 65 %-EE-Regel erfüllt wird. Diese Vorgaben lassen sich lediglich mit den zuvor genannten Hybridsystemen oder einem Bezug entsprechender Brennstoffe erfüllen.

Bestehende Heizungen genießen zwar Bestandsschutz, sollten jedoch aufgrund der steigenden Energiepreise und -emissionsbepreisung sowie der Regelungen des GEG als Übergangslösungen betrachtet werden.

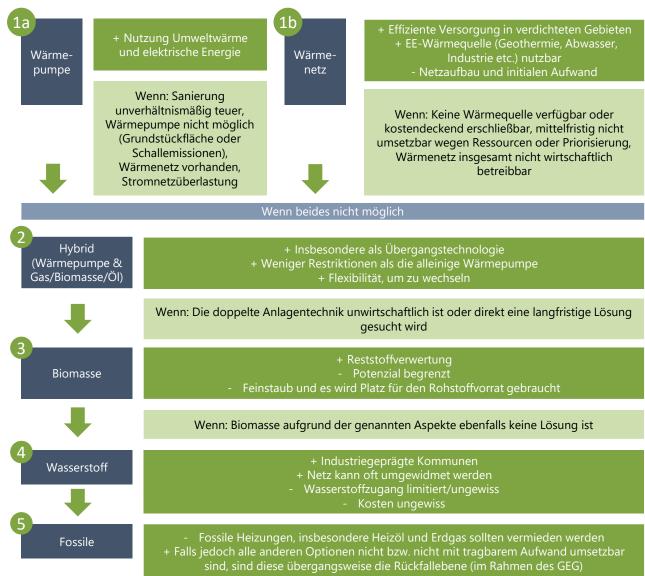


Abbildung 42: Volkswirtschaftliche Technologiepriorisierung

5.3 Wärmepumpeneignungsidentifikation

Abbildung 43 beschreibt die Eignung von Gebäuden für dezentrale elektrische Wärmepumpen. Grundsätzlich könnten sich sehr viele Gebäude für Wärmepumpen eignen. Dabei muss jedoch eine Reihe von Anforderungen und Restriktionen berücksichtigt werden.

Welche Gebäude eignen sich für dezentrale elektrische Wärmepumpen?

Grundsätzlich könnten sich sehr viele Gebäude für Wärmepumpen eignen. Es sind dabei eine Reihe von Anforderungen / Restriktionen zu beachten:

Vorlauftemperatur (VLT): Diese variieren in Heizungssystemen zwischen 40 und 90 °C. Je niedriger diese ist, desto effizienter können Wärmepumpen arbeiten. Grundsätzlich gibt es WP-Lösungen für viele Temperaturniveaus, jedoch sollte eine Heizflächenvergrößerung in Betracht gezogen werden, falls die VLT im Bestand zu hoch ist.

Platzbedarf: Sowohl für den innerhalb als auch außerhalb des Gebäudes benötigten Teil der Wärmepumpe wird Platz benötigt. Dies betrifft entweder geeignete Bodenflächen oder Aufstellorte.

Wärmequelle: Als Wärmequellen stehen grundsätzlich Luft, und Wasser/Sole zur Verfügung. Dabei wird aktuell meistens Luft genutzt, da der initiale Aufwand deutlich geringer ist und sich der Mehraufwand für Bodenarbeiten oft nicht rechnet.

Schallemissionen: Luft/Wasser-WP benötigen ein Außengerät, welches der Luft Wärmeenergie entzieht. Dieses Außengerät verursacht Schallemissionen. Diese dürfen nicht die Grenzwerte der TA Lärm überschreiten. Dazu nutzen wir ein im folgenden dargestelltes Verfahren.

Leistung: Die benötigte Heizleistung muss durch die Wärmepumpe (ggf. inkl. Heizstab oder Spitzenlastkessel) abgedeckt werden. Es gibt WP mittlerweile für viele Leistungsbereiche, daher ist dies nur selten eine kritische Restriktion.

Abbildung 43: Wärmepumpeneignungsidentifikation

5.4 Wärmenetz- und Wärmepumpeneignung

In Abbildung 44 ist die Prüfung aller Gebäude aus der Wärmenetz- und Wärmepumpeneignung dargestellt. Durch die beschriebene Methode sind ca. 91 % der Gebäude grundsätzlich für Wärmepumpen geeignet. Des Weiteren liegen 41 % der Gebäude in Gebieten, in denen auch Wärmenetze möglich sind. Daraus ergeben sich 2.214 Gebäude (36 %), die sowohl durch eine Wärmepumpe als auch durch ein Wärmenetz versorgt werden könnten. Nur 264 Gebäude (4 %) können nach jetzigem Stand weder durch eine Wärmepumpe noch durch ein Wärmenetz versorgt werden. Dort wird wohl in der Regel eine reine Biomasseheizung wie z.B. eine Pelletheizung eine der geeignetsten Technologien sein.

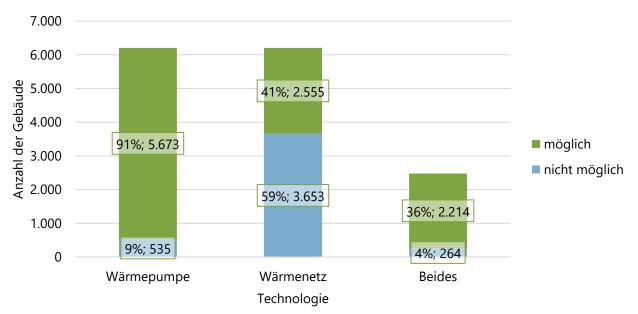


Abbildung 44: Wärmenetz- und Wärmepumpeneignung

5.5 Auswirkungen der Sanierung

Um die Wärmewende in der Verbandsgemeinde Ruwer erfolgreich voranzutreiben, ist sowohl die Umstellung auf erneuerbare Energien in der Wärmeversorgung als auch eine umfassende energetische Sanierung bestehender Gebäude unerlässlich. Um die Gebäude effizient und wirtschaftlich zu sanieren, werden drei Sanierungsklassen definiert. Jede Sanierungsklasse beschreibt verschiedene Maßnahmenpakete und deren wirtschaftliche Auswirkungen. Darüber hinaus wird die Notwendigkeit von Förderungen hervorgehoben, um die finanzielle Belastung für die Eigentümer zu minimieren und die Sanierung attraktiv zu machen.

5.5.1 Sanierungsklassen

Die energetische Sanierung bestehender Gebäude ist ein zentraler Baustein der kommunalen Wärmeplanung in der Verbandsgemeinde Ruwer. In Tabelle 6 ist eine Übersicht der betrachteten Sanierungsklassen dargestellt. Durch die Definition und Umsetzung der drei Sanierungsklassen wird eine Struktur geschaffen, die es ermöglicht, Gebäude je nach Bedarf und finanziellen Möglichkeiten effizient zu sanieren. Förderprogramme sind dabei unerlässlich, um die finanziellen Hürden zu senken und die Wirtschaftlichkeit der Maßnahmen zu erhöhen. So kann langfristig eine nachhaltige und klimafreundliche Wärmeversorgung sichergestellt werden.

Tabelle 6: Betrachtete Sanierungsklassen

Sanierungs- klasse	Maßnahmen	Investi- tions- kosten	Energieeinspa- rung	Amorti- sations- zeit	Förderung
1: Geringin- tensive Sa- nierung	Austausch alter Heizkörperventile gegen thermostatische Ventile-Durchführung kleinerer Abdichtungsarbeiten an Fenstern und Türen- Installation von Heizkörperreflektoren hinter alten Heizkörpern-Einbau von programmierbaren Heizungssteuerungen	Sehr ge- ring	Gering bis mode- rat, hauptsächlich durch verbesserte Wärmeverteilung und Vermeidung von Wärmeverlus- ten	Sehr kurz, in der Re- gel in- nerhalb weniger Jahre	Förderungen für kleinere Maßnahmen sind begrenzt, aber lokale und regionale Programme bieten möglicherweise kleine Zuschüsse
2: Mittelin- tensive Sa- nierung	Austausch der Heizungsanlage durch eine Wärmepumpe oder ein Bio- masseheizsystem- Vollständige Dämmung der Außenwände und des Dachs- Austausch alter Fenster ge- gen moderne, dreifach verglaste Fenster	Mittel bis hoch	Hoch, da umfas- sende Dämmmaß- nahmen und effizi- ente Heizsysteme eingesetzt werden	Mittel bis lang, ab- hängig von den Energie- kosten	Umfangreiche Förderprogramme können bis zu 50% der Kosten abdecken, insbesondere für Wärmepumpen und Dämmmaßnahmen
3: Tiefgrei- fende Sa- nierung	Komplettsanierung des Gebäudes auf Passivhaus-Standard- Einbau ei- ner kontrollierten Wohnraumlüftung mit Wärmerückgewinnung- Installa- tion von Photovoltaik-Anlagen zur Eigenstromversorgung- Nutzung von Solarthermie für die Warmwas- serbereitung	Hoch bis sehr hoch	Sehr hoch, Ge- bäude benötigen kaum noch ex- terne Energiezu- fuhr	Lang, aber sehr hohe Einspa- rungen bei den Energie- kosten	Umfangreiche Förderungen notwendig, die bis zu 60% der Kosten decken können, ein- schließlich spezi- eller Kredite zu günstigen Kondi- tionen

5.5.2 Entwicklung des Wärmebedarfs

Abbildung 45 zeigt die Entwicklung des Wärmebedarfs in der Verbandsgemeinde Ruwer bei der Anwendung von drei verschiedenen Sanierungsszenarien. Dabei wird der gesamte Wärmebedarf vor der Sanierung sowie nach der Umsetzung der Sanierungsklassen 1, 2 und 3 dargestellt. Während bei Sanierungsklasse 1 der Wärmebedarf nahezu unverändert bleibt und nur eine minimale Einsparung erreicht wird, zeigt Sanierungsklasse 2 bereits eine Reduktion des Wärmebedarfs um etwa 10 %. Die umfangreichste Sanierung, die in Sanierungsklasse 3 definiert wurde, führt zu einer deutlichen Halbierung des Wärmebedarfs.

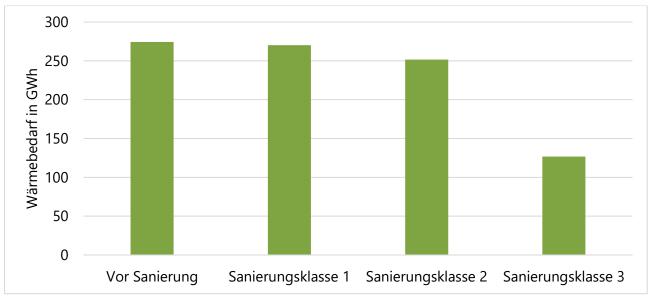


Abbildung 45: Entwicklung des Wärmebedarfs

5.5.3 Wirtschaftlichkeit und derzeitige Eintrittswahrscheinlichkeit der Sanierung

Die Abbildung 46 veranschaulicht die Verteilung der Gebäudeanzahl nach dem Return on Investment (ROI) für verschiedene Sanierungsmaßnahmen, in Bezug auf die Sanierungsklasse 3. Der ROI gibt an, wie viele Jahre es dauert, bis die Investitionskosten durch Einsparungen zurückverdient sind. In der Abbildung wird die Anzahl der Gebäude in verschiedenen Zeitgruppen des ROI dargestellt. Die meisten Gebäude haben einen ROI zwischen 17 und 29 Jahren, wobei der Schwerpunkt bei 20 bis 23 Jahren liegt.

Die finanziellen Aufwendungen für eine energetische Sanierung einer Liegenschaft sind für viele Immobilienbesitzer nicht attraktiv. Die Kosten für Material und Handwerker sind häufig so hoch, dass sich die jährlichen Einsparungen erst in einem langen Zeitraum bemerkbar machen. Ohne staatliche Förderungen oder Zuschüsse ist die Amortisationszeit oft so lang, dass sich die Maßnahme für viele Menschen wirtschaftlich kaum lohnt. Zusätzliche Anreize und finanzielle Unterstützung sind daher von entscheidender Bedeutung, um Sanierungen flächendeckend attraktiv zu machen.

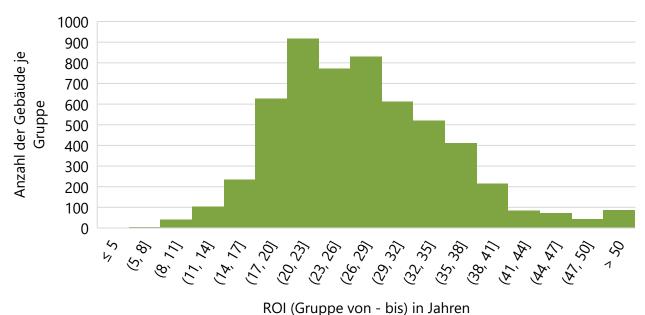


Abbildung 46: Sanierungsszenarien ROI (Sanierungsklasse 3)

5.6 Ergebnisse der Szenarien

5.6.1 Entwicklung Wärmebedarf nach Energieträger

Die Auswertung zur Entwicklung des Wärmebedarfs nach Energieträgern bis 2045 zeigt eine klare Tendenz zur Reduktion des Energiebedarfs und zur Umstellung auf nachhaltige Energiequellen. Für die Analyse wurden der jährliche Energiebedarf der Heizungssysteme und der prognostizierte Wärmeverbrauch berücksichtigt. Dabei wurde für jede energetische Sanierung sowie die Auswahl der Heizungstechnologie die jeweils kostengünstigste Variante für jeden Haushalt gewählt. Der Austausch der Heizungsanlagen erfolgte in erster Linie basierend auf dem Alter der bestehenden Anlagen.

Das Ergebnis, wie in Abbildung 47 dargestellt, zeigt eine signifikante Reduktion des Wärmebedarfs von 274 GWh im Jahr 2024 auf 124 GWh im Jahr 2045. Zeitgleich wird die derzeitige, stark heizöllastige Wärmeversorgung zunehmend durch umweltfreundliche Alternativen wie Wärmenetze, Umweltwärme, Strom und Biomasse ersetzt, wobei der Anteil an Biomasse im Laufe der Jahre abnimmt.

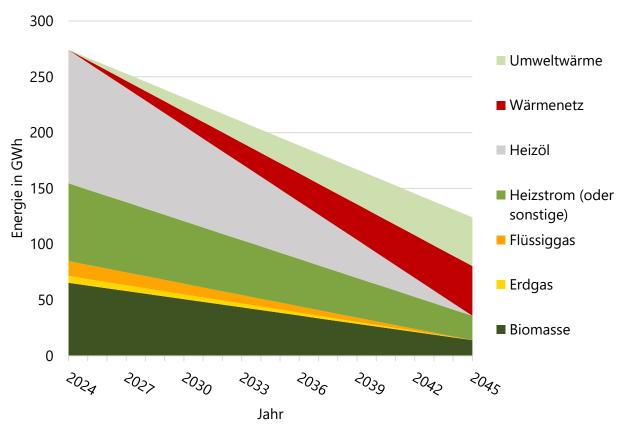


Abbildung 47: Entwicklung Wärmebedarf nach Energieträger

5.6.2 Treibhausgasemissionen des Wärmebedarfs

Die Abbildung 48 zeigt die Entwicklung der CO₂-Emissionäquivalente in tausend Tonnen von 2024 bis 2045. Die Emissionen sind in verschiedene Energiequellen unterteilt, die im Laufe der Zeit unterschiedliche Anteile an den Gesamtemissionen haben.

Die CO₂-Emissionen der Wärmeversorgung in der VG Ruwer sinken bis 2045 von fast 70.000 Tonnen auf nahezu null. Diese Entwicklung ist in erster Linie auf die schrittweise Abschaffung der Ölheizungen zurückzuführen, die bisher einen großen Anteil der Emissionen verursacht haben. Parallel dazu wird der CO₂-Ausstoß bei der Stromproduktion bis 2045 weiter reduziert. Durch diese Transformation hin zu emissionsfreien Energieträgern wie Wärmenetzen, Umweltwärme und Biomasse kann die Verbandsgemeinde bis 2045 eine klimaneutrale Wärmeversorgung erreichen.

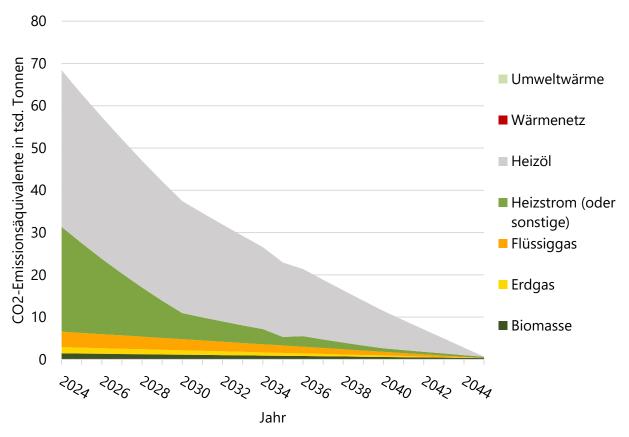


Abbildung 48: Treibhausgasemissionen des Wärmebedarfs

5.6.3 Endenergieverbrauch der leitungsgebundenen Wärmeversorgung

Nach Anlage 2 des WPG ist der "jährliche Endenergieverbrauch der leitungsgebundenen Wärmeversorgung nach Energieträgern in kWh/a und der Anteil der Energieträger am gesamten Endenergieverbrauch der leitungsgebundenen Wärmeversorgung in Prozent" darzustellen. Dies ist aufgrund der Detailtiefe der Wärmeplanung nicht möglich. Es kann lediglich eine Bandbreite, welche derzeit wahrscheinlich erscheint, aufgezeigt werden.

Wie später in Abschnitt 6.1.2 aufgezeigt wird, sind für die Wärmenetzeignungsgebiete mehrere EE-Wärmequellen denkbar. Grundsätzlich wird dabei, wie in den meisten Wärmenetzen, eine Kombination aus Grund- und Spitzenlast sowie ggf. weiterer Erzeugungskomponenten sinnvoll sein. Dabei werden insbesondere Wärmepumpen mit den Wärmequellen: Abwasser, Geothermie und Seethermie eine Rolle spielen. Zudem werden Solarthermie, Biomasse und Spitzenlasterzeuger mit übergangsweisen fossilen und langfristig dann auf Biomasse oder grünen Gasen basierender Wärmeerzeugung geprüft werden. Dabei wird die Grundlast bzw. der EE-Anteil der Netze wie im WPG § 30 gefordert mindestens 65 % betragen.

5.6.4 Anteil der leitungsgebundenen Wärmeversorgung am gesamten Endenergieverbrauch der Wärmeversorgung

Unter der Annahme, dass die Wärmenetze im Bereich 2028 bis 2042 fertiggestellt werden können und alle als sinnvoll identifizierten Gebäude sich an das Wärmenetz anschließen, kann der

nachfolgend dargestellte Anteil der leitungsgebundenen Wärmeversorgung am gesamten Endenergieverbrauch der Wärmeversorgung erreicht werden.

Die Abbildung 49 zeigt die potenzielle Entwicklung des Anteils von Wärmenetzen im Vergleich zu anderen Energiequellen (Rest) über den Zeitraum von 2025 bis 2045. Momentan liegt der Anteil der Wärmenetze bei 0 %. Im Laufe der Zeit soll dieser Anteil kontinuierlich ansteigen. Bis 2035 bleibt der Anstieg relativ moderat, aber danach beschleunigt sich das Wachstum deutlich. Im Jahr 2045 erreichen die Wärmenetze einen Anteil von etwa 36 %, während der Rest der Energiequellen, dargestellt durch die graue Fläche, auf etwa 64 % sinkt.

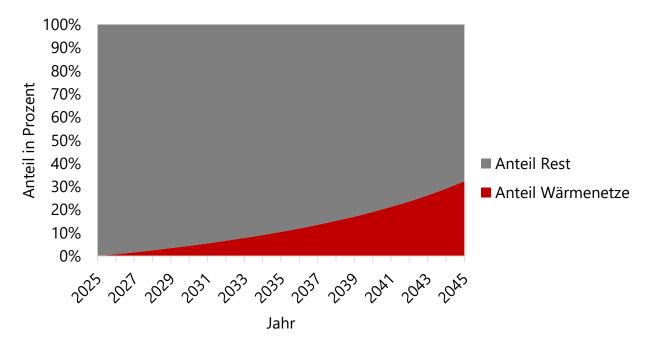


Abbildung 49: Anteil der leitungsgebundenen Wärmeversorgung am gesamten Endenergieverbrauch der Wärmeversorgung

5.6.5 Gebäude mit Anschluss an ein Wärmenetz und deren Anteil an der Gesamtheit der Gebäude im beplanten Gebiet

Die Abbildung 50 zeigt den Anteil der Gebäude, die an ein Wärmenetz angeschlossen sind, im Vergleich zu den restlichen Gebäuden im beplanten Gebiet über den Zeitraum von 2025 bis 2045. Der Anteil der angeschlossenen Gebäude nimmt über die Jahre hinweg kontinuierlich zu. Das Zielszenario geht davon aus, dass 2045 40 % aller Gebäude über einen Wärmenetzanschluss verfügen.

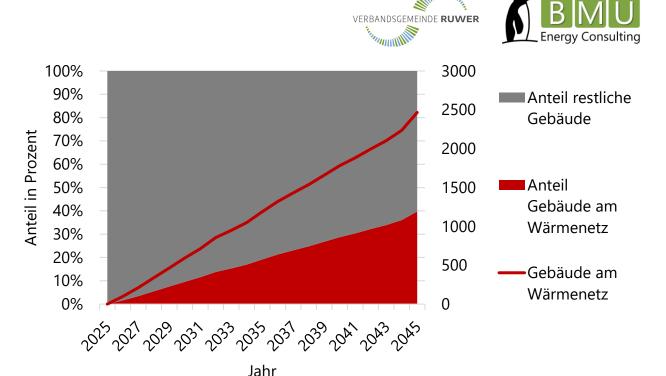


Abbildung 50: Anzahl und Anteil der Gebäude mit Anschluss an ein Wärmenetz

5.6.6 Endenergieverbrauch aus Gasnetzen

Die Abbildung 51 zeigt die Entwicklung des Energiebezugs aus dem Gasnetz in Megawattstunden und dessen Anteil am gesamten Endenergieverbrauch von 2024 bis 2045. Da der Anteil des Gasbezugs in der Verbandsgemeinde Ruwer nur gering ist, bleibt die Veränderung über den Zeitraum ebenfalls relativ unbedeutend. Der Gasverbrauch sinkt von etwa 6.000 MWh im Jahr 2024 stetig bis auf nahezu 0 MWh im Jahr 2045, mit einem entsprechenden Rückgang des prozentualen Anteils am gesamten Energieverbrauch.

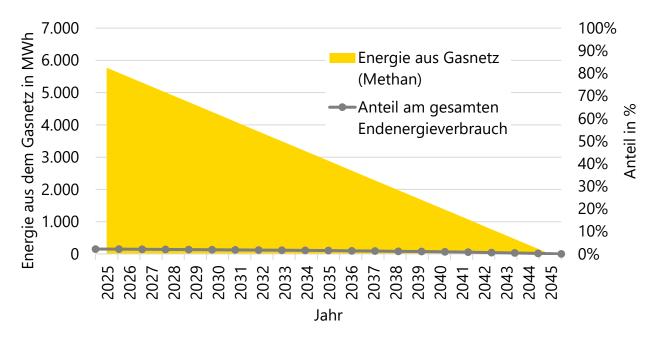


Abbildung 51: Endenergieverbrauch aus Gasnetzen nach Energieträgern und der Anteil der Energieträger am gesamten Endenergieverbrauch der gasförmigen Energieträger

5.6.7 Anzahl der Gebäude mit Anschluss an ein Gasnetz und deren Anteil an der Gesamtheit der Gebäude im beplanten Gebiet in Prozent

Abbildung 52 zeigt die Anzahl der Gebäude, die an das Gasnetz angeschlossen sind, sowie deren prozentualen Anteil an der Gesamtheit der Gebäude im beplanten Gebiet von 2025 bis 2045. Da der Anteil der Gasanschlüsse in der Verbandsgemeinde Ruwer ohnehin gering ist, bleibt der Rückgang im Laufe der Zeit moderat. Bis 2045 wird der Anschluss an das Gasnetz vollständig verschwinden.

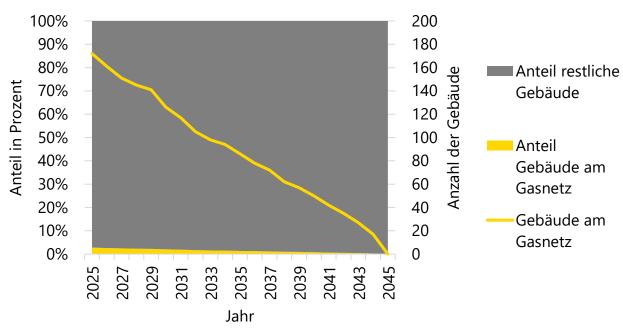


Abbildung 52: Gebäude mit Anschluss ans Gasnetz und Anteil im beplanten Gebiet

6 Strategie und Maßnahmenkatalog

6.1 Einteilung des beplanten Gebiets in voraussichtliche Wärmeversorgungsgebiete

6.1.1 Wärmenetzeignungswahrscheinlichkeit

Nach § 18 des WPG ist das beplante Gebiet in voraussichtliche Wärmeversorgungsgebiete einzuteilen. Abbildung 53 zeigt die Eignung verschiedener Gebiete für die Wärmebereitstellung. Die Bereiche sind farblich nach ihrer Eignungswahrscheinlichkeit kategorisiert. Dunkelrot markierte Flächen sind sehr wahrscheinlich geeignet für die Wärmenetzerschließung, rot markierte Flächen sind wahrscheinlich geeignet, hell-gelbe Flächen sind wahrscheinlich ungeeignet und hellgraue Flächen sind sehr wahrscheinlich ungeeignet. Auf die einzelnen Gebiete wird im Folgenden näher eingegangen.

Die Kriterien, wodurch diese Einteilung zustande kommt, sind insbesondere:

- Wärmeverbrauchsdichte der Baublöcke und
- Erneuerbare Energien Potenziale in der Nähe der Wärmenetzeignungsgebiete

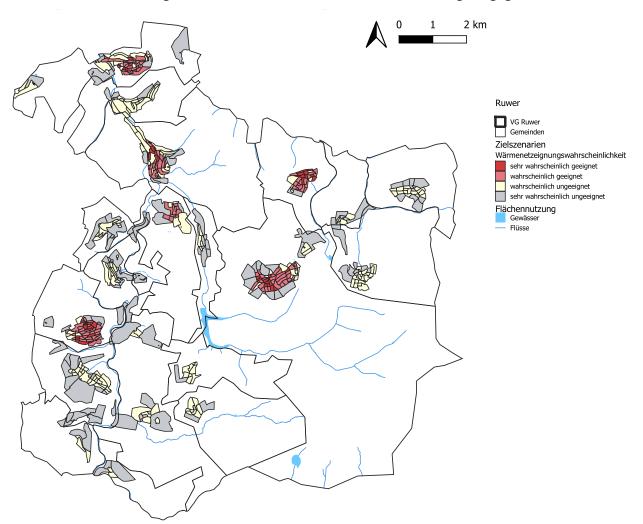


Abbildung 53: Wärmenetzeignungswahrscheinlichkeit je Baublock

6.1.2 Wärmepumpeneignungswahrscheinlichkeit

Wie unter Abschnitt 5.3 beschrieben, wurde eine Wärmepumpeneignungsidentifikation durchgeführt. Abbildung 54 zeigt die Eignung verschiedener Gebiete für die Installation von Wärmepumpen in der VG Ruwer. Die Flächen sind farblich nach ihrer Eignungswahrscheinlichkeit kategorisiert. Grün markierte Bereiche sind sehr wahrscheinlich geeignet für die Wärmepumpennutzung.

Da die gesetzliche Forderung einer Eignungswahrscheinlichkeit nicht trivial mit einer gebäudespezifischen Auswertung kombinierbar ist, haben wir uns dafür entschieden die gesetzliche Anforderung folgendermaßen auszuweisen:

- wenn über 80 % der Gebäude in einem Baublock für eine Wärmepumpe geeignet sind dieser als sehr wahrscheinlich geeignet eingefärbt wird
- wenn 50 % bis 80 % der Gebäude in einem Baublock für eine Wärmepumpe geeignet sind dieser als wahrscheinlich geeignet eingefärbt wird
- wenn 20 % bis 50 % der Gebäude in einem Baublock für eine Wärmepumpe geeignet sind dieser als wahrscheinlich ungeeignet eingefärbt wird
- wenn unter 20 % der Gebäude in einem Baublock für eine Wärmepumpe geeignet sind dieser als sehr wahrscheinlich ungeeignet eingefärbt wird

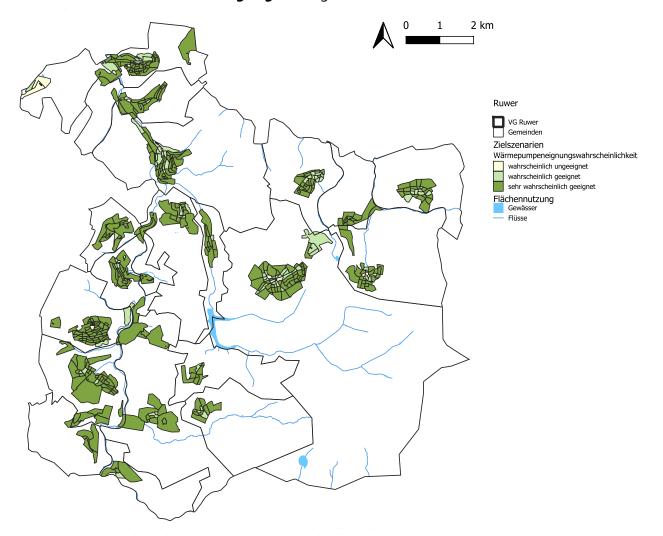


Abbildung 54: Wärmepumpeneignungswahrscheinlichkeit

6.1.3 Weitere dezentrale Wärmeversorgung

Alle Gebiete bzw. Gebäude, welche weder für Wärmepumpen noch für Wärmenetze geeignet sind, werden zusammengefasst durch weitere dezentrale Wärmeversorgung versorgt. Dafür könnten insbesondere Biomasseheizungen (wie Pelletheizungen) oder auch Hybridheizungen (bis 2045 mit 65 %-EE und ab 2045 dann mit 100 % EE-Anteil) genutzt werden.

6.2 Übersicht über die Wärmenetzeignungsgebiete in Kombination mit den Potenzialen

Abbildung 55 zeigt die Wärmenetzversorgungsoptionen für verschiedene Orte in der Verbandsgemeinde Ruwer und stellt dabei Ziel-Szenarien für die Nutzung unterschiedlicher Energiequellen dar. Die Karte hebt die potenziellen Energiequellen für verschiedene Orte hervor und veranschaulicht das Potenzial für die Nutzung erneuerbarer Energien sowie die geplanten Spitzenlastabdeckungen.

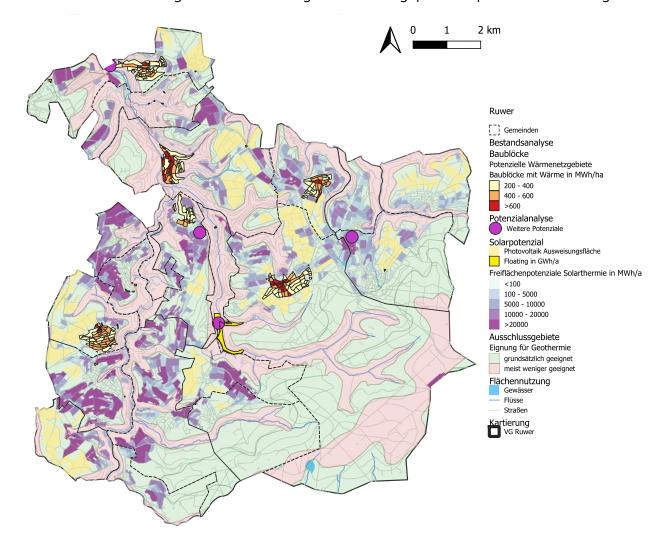


Abbildung 55: Potenzielle Wärmenetzgebiete und EE-Potenziale

Es wurden für die folgenden Ortsgemeinden potenzielle Wärmenetzeignungsgebiete identifiziert:

- Gusterath
- Mertesdorf
- Morscheid

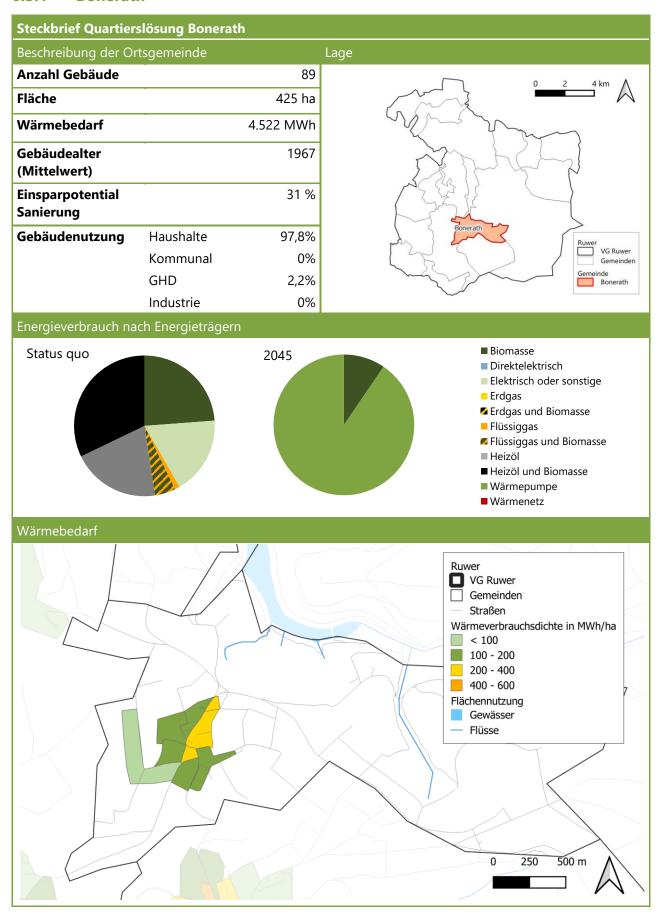
- Osbura
- Thomm
- Waldrach

6.3 Ortsgemeinde spezifische Steckbriefe mit Empfehlungen

Im Folgenden wird die Struktur des Steckbriefes vorgestellt, welcher auf alle Ortsgemeinden angewendet wird, um eine umfassende Analyse und Planung zu ermöglichen. Diese Struktur umfasst die Beschreibung der Ortsgemeinde, ihre geographische Lage, den aktuellen Energieverbrauch nach verschiedenen Energieträgern, den spezifischen Wärmebedarf sowie maßgeschneiderte Maßnahmenempfehlungen für die Wärmeversorgung.

Die Beschreibung der Ortsgemeinde enthält Informationen zur Anzahl der Gebäude, der Fläche, des Wärmebedarfs, des Gebäudealter (Mittelwert), des Einsparpotentials durch Sanierung und Gebäudenutzung durch die Sektoren Haushalte, Kommunal und GHD.

Die Lage zeigt eine Übersichtskarte, wo die Ortsgemeinde in der Verbandsgemeinde verortet ist. Der Energieverbrauch nach Energieträgern zeigt im Status quo und im Zieljahr 2045 die Verteilung auf die unterschiedlichen Heizungstechnologien. Auf Basis dieser Analysen werden Maßnahmenempfehlungen formuliert, die in zwei Kategorien unterteilt sind: Dezentrale Wärmeversorgung und Zentrale Wärmeversorgung. Für die dezentrale Wärmeversorgung werden Maßnahmen wie die Verbesserung der Gebäudedämmung und die Installation von Wärmepumpen empfohlen. Im Bereich der zentralen Wärmeversorgung wird ggf. der Aufbau von Wärmenetzen und die Integration von Wärmequellen empfohlen.


Dieser Steckbrief wird als Standard für alle Ortsgemeinden verwendet, um eine systematische und einheitliche Herangehensweise zur Verbesserung der Energieeffizienz und zur Reduzierung der CO₂-Emissionen zu gewährleisten.

Grundsätzlich ähneln sich die Steckbriefe, da ein möglichst einheitlicher Ansatz gewählt wurde. Es unterscheiden sich im Bezug auf die Empfehlungen eigentlich nur die Ortsgemeinden mit und ohne Wärmenetz. Innerhalb dieser zwei Gruppen resultieren im Wesentlichen ähnliche Empfehlungen.

6.3.1 Bonerath

Maßnahmenempfehlungen

Bonerath weist einen Wärmebedarf von 4522 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 98 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

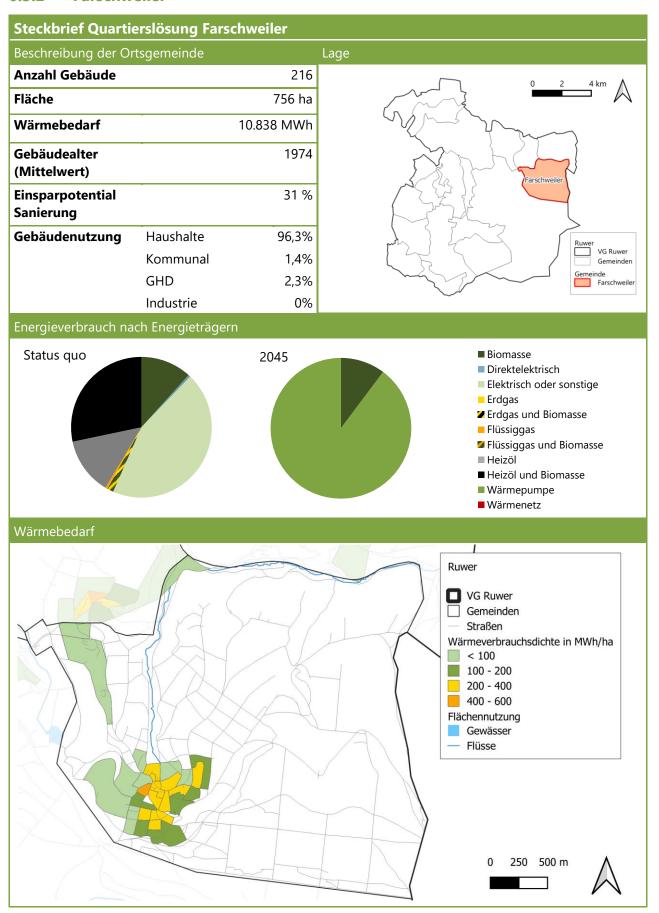
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 81 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1967. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 89 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 31 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Bonerath wird in 89 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Bonerath hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.2 Farschweiler

Maßnahmenempfehlungen

Farschweiler weist einen Wärmebedarf von 10838 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 96 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

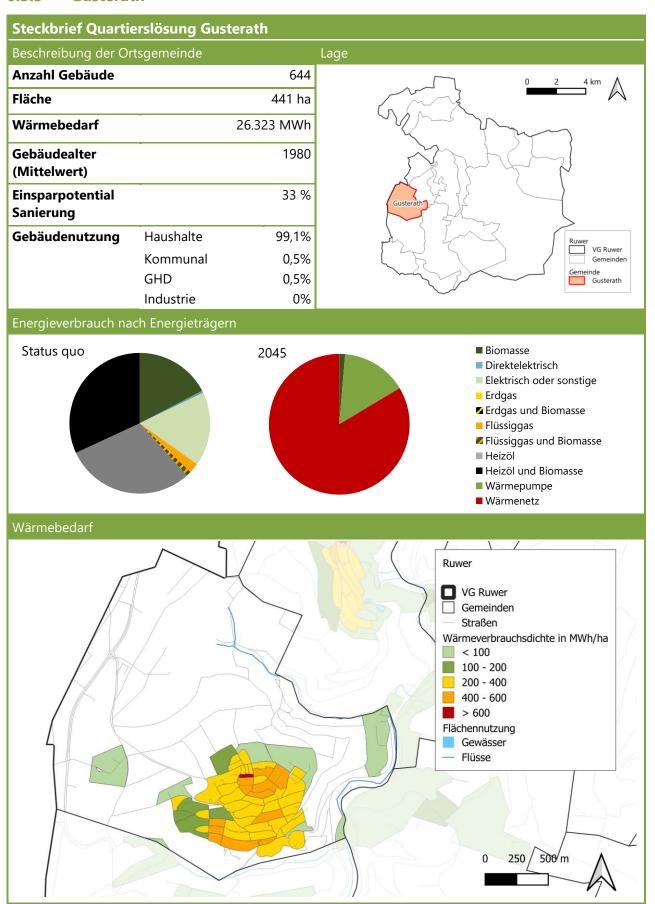
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 195 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1974. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 216 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 31 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Farschweiler wird in 216 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Farschweiler hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.3 Gusterath

Maßnahmenempfehlungen

Gusterath weist einen Wärmebedarf von 26323 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. In einigen Bereichen liegt eine hohe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit hoch genug für Wärmenetze ist. Dies ermöglicht die potenziellen Verteilungsverluste gering zu halten, was die Installation und den Betrieb eines zentralen Wärmenetzes wirtschaftlich attraktiver macht.

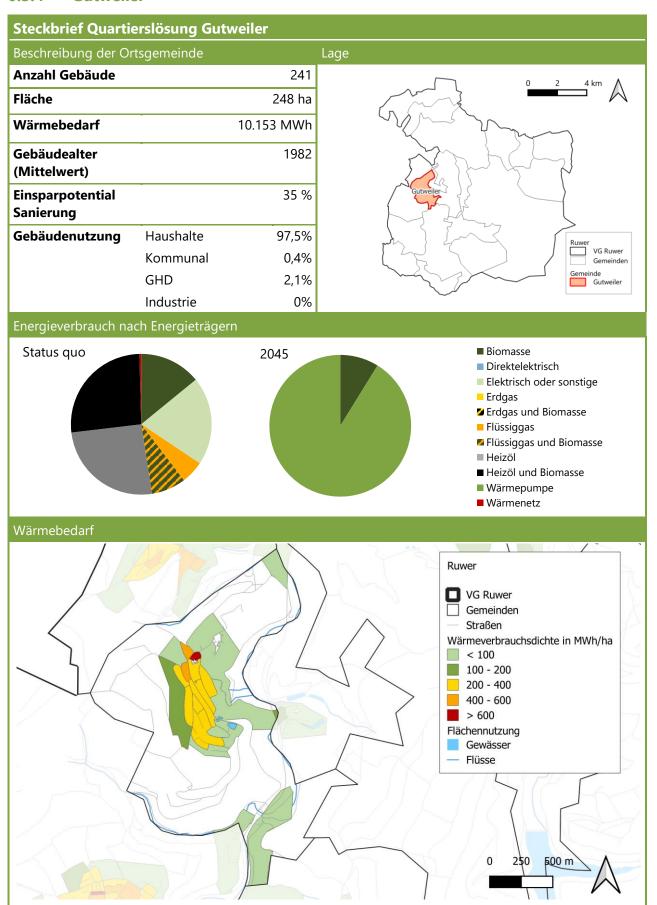
Daher werden folgende Maßnahmen empfohlen:

- 1. Prüfung des Aufbaus eines Wärmenetzes mittels einer BEW-Machbarkeitsstudie.
- 2. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 95 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 3. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 4. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1980. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 644 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 33 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Gusterath wird in etwa 104 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Gusterath hat partiell eine hohe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung grundsätzlich geeignet. Als Energiequellen könnten sich insbesondere Geothermie, Solarthermie und eine Spitzenlastabdeckung durch Gas und Biomasse anbieten. Es wird empfohlen eine Machbarkeitsstudie durchzuführen, in welcher im Detail untersucht wird, welche Flächen genau benötigt und genutzt werden könnten, um das Wärmenetz zu speisen. Auch der Leitungsverlauf und die Dimensionierung von Speichern gehört dazu. Im Ergebnis würde sich dann ein potenzieller Wärmevollgestehungspreis des Netzes ergeben. Dieser würde dann die Möglichkeit eröffnen mit den Bürgern über die Bereitschaft eines Anschlusses an das Wärmenetz zu diskutieren. Wenn all diese Aspekte positiv verlaufen, könnte ein Wärmenetzaufbau vorangetrieben werden und auch dafür potenziell Fördermittel eingeworben werden. Falls sich ein Wärmenetz als nicht zielführend herausstellt, müsste der Fokus mehr auf Wärmepumpen und ggf. Hybrid-Wärmepumpen und Biomasseheizungen liegen.

6.3.4 Gutweiler

Maßnahmenempfehlungen

Gutweiler weist einen Wärmebedarf von 10153 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 98 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

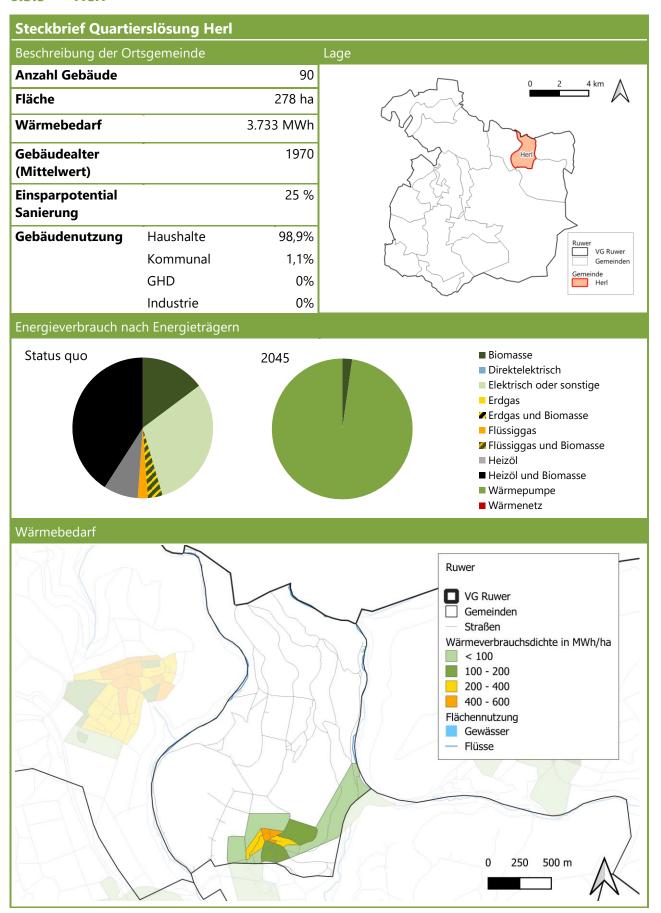
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 220 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1982. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 241 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 35 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Gutweiler wird in 241 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Gutweiler hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.5 Herl

Herl weist einen Wärmebedarf von 3733 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

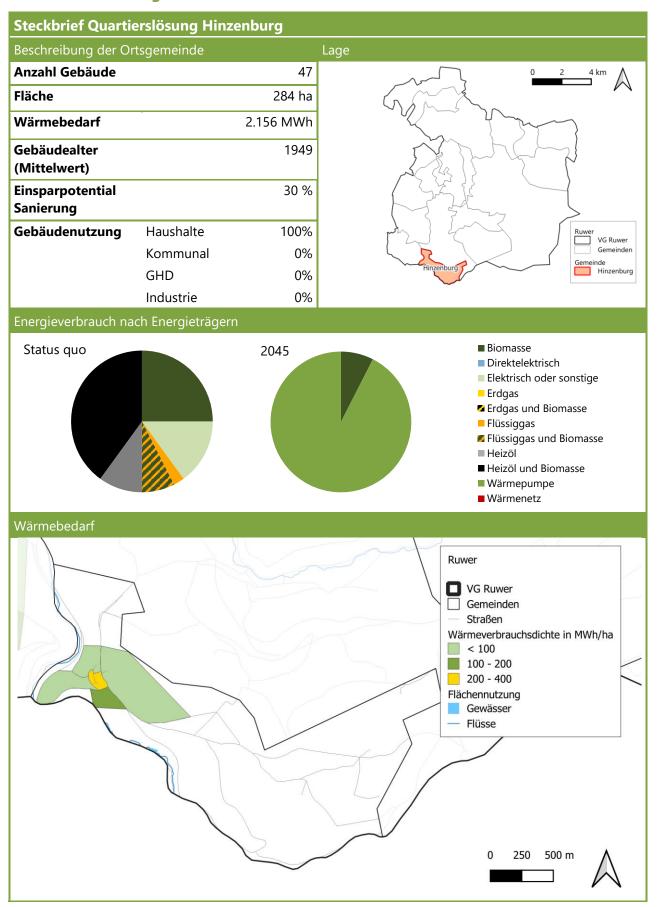
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 88 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1970. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 90 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 25 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Herl wird in etwa 90 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Herl hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.6 Hinzenburg

Hinzenburg weist einen Wärmebedarf von 2156 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 100 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

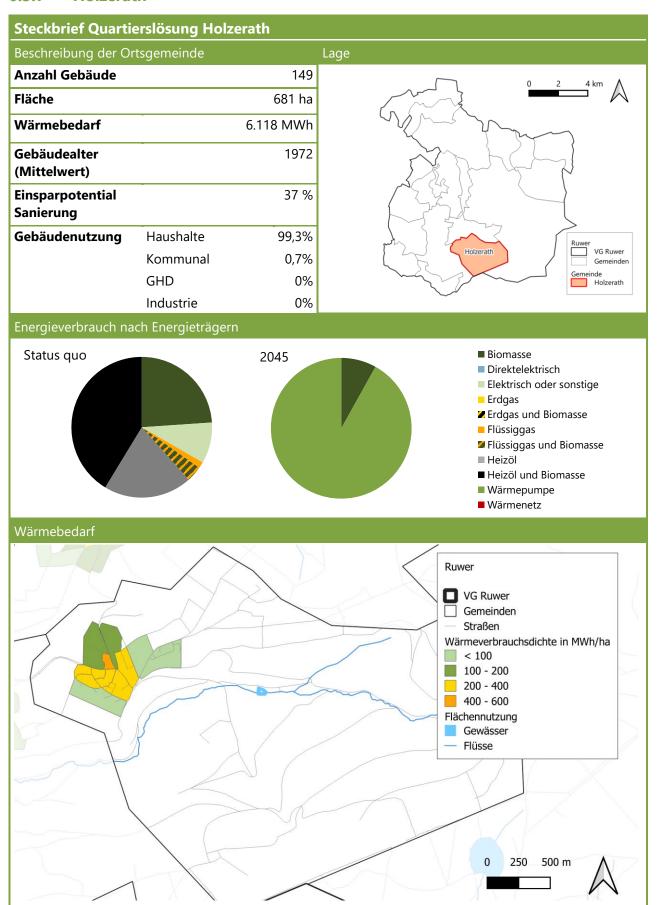
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 44 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1949. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 47 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 30 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Hinzenburg wird in 47 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Hinzenburg hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.7 Holzerath

Holzerath weist einen Wärmebedarf von 6118 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

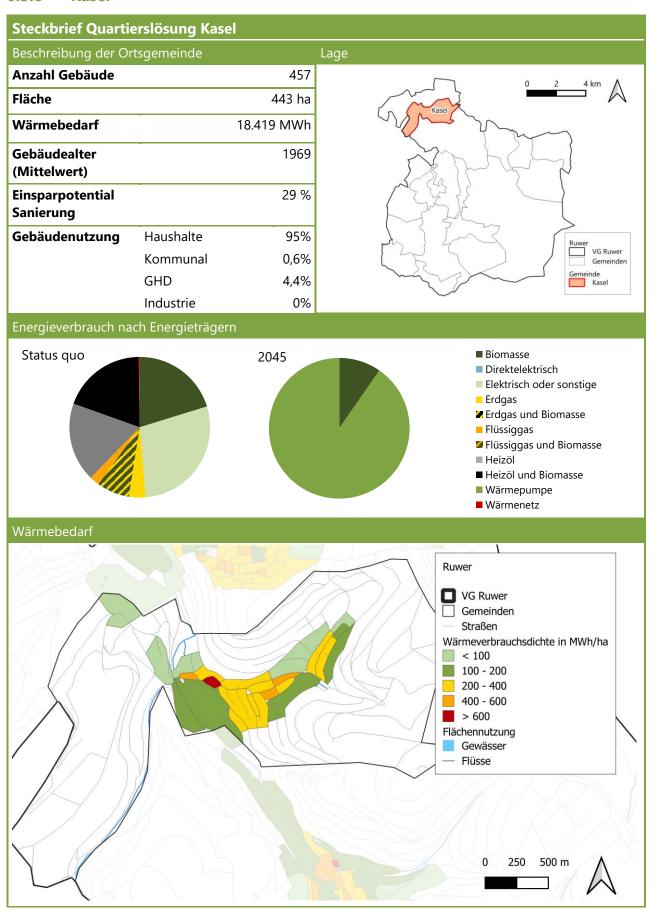
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 138 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1972. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 149 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 37 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Holzerath wird in etwa 149 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Holzerath hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.8 Kasel

Kasel weist einen Wärmebedarf von 18419 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 95 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

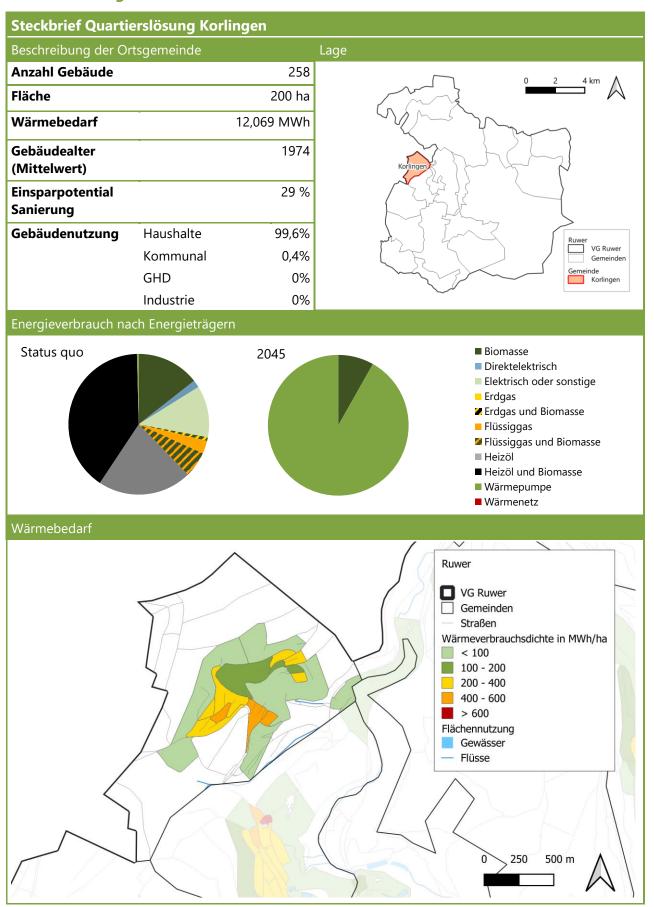
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 414 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1969. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 457 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 29 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Kasel wird in etwa 457 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Kasel hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.9 Korlingen

Korlingen weist einen Wärmebedarf von 12069 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 100 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

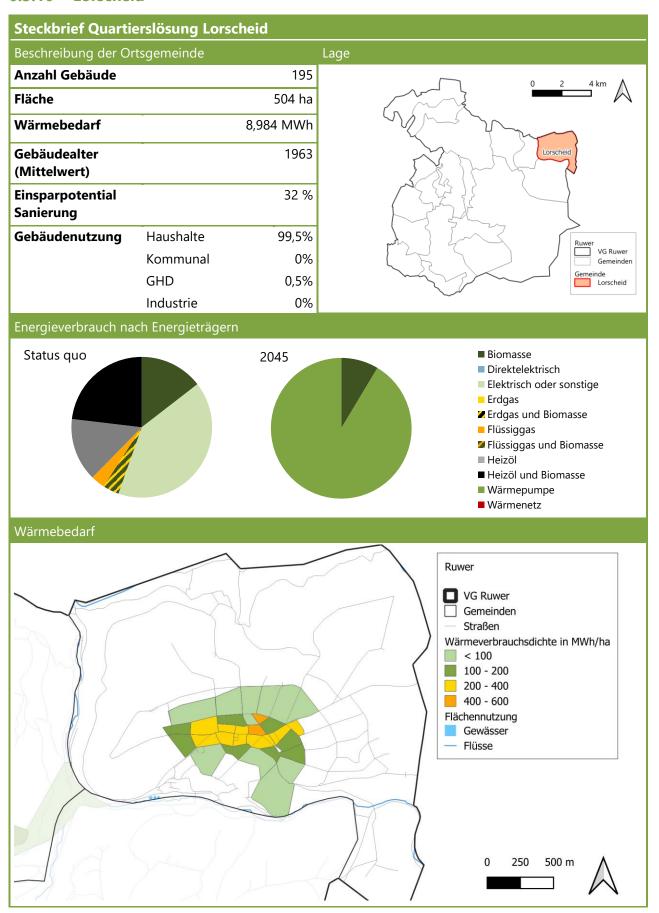
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 239 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1974. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 258 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 29 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Korlingen wird in etwa 258 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Korlingen hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.10 Lorscheid

Lorscheid weist einen Wärmebedarf von 8984 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

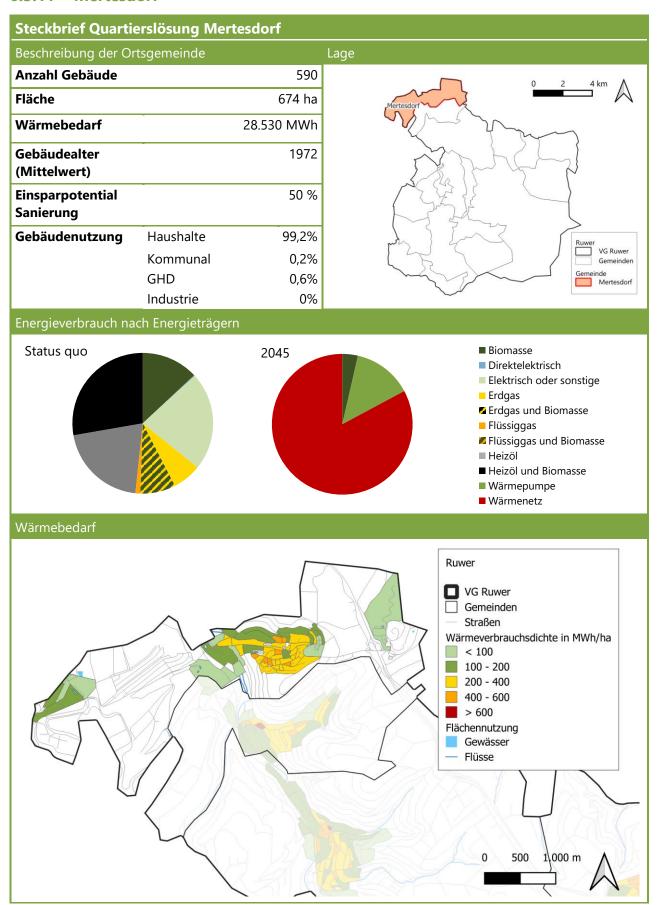
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 178 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1963. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 195 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 32 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Lorscheid wird in etwa 195 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Lorscheid hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.11 Mertesdorf

Mertesdorf weist einen Wärmebedarf von 28530 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. In einigen Bereichen liegt eine hohe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit hoch genug für Wärmenetze ist. Dies ermöglicht die potenziellen Verteilungsverluste gering zu halten, was die Installation und den Betrieb eines zentralen Wärmenetzes wirtschaftlich attraktiver macht.

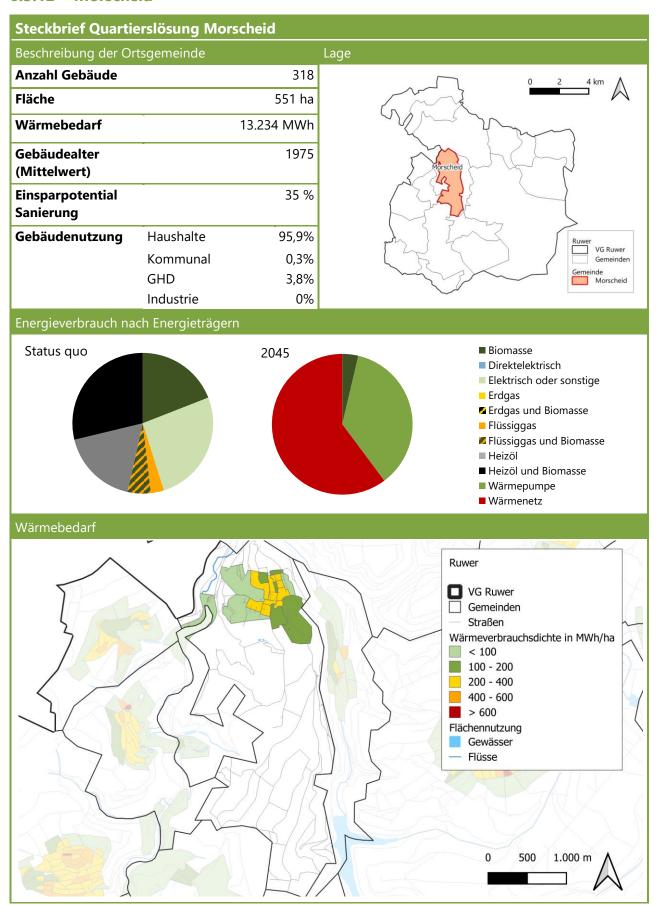
Daher werden folgende Maßnahmen empfohlen:

- 1. Prüfung des Aufbaus eines Wärmenetzes mittels einer BEW-Machbarkeitsstudie.
- 2. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 91 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 3. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 4. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1972. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 590 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 35 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Mertesdorf wird in etwa 91 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Mertesdorf hat partiell eine hohe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung grundsätzlich geeignet. Als Energiequellen könnten sich insbesondere Abwasser + ggf. Solarthermie + Spitzenlast anbieten. Es wird empfohlen eine Machbarkeitsstudie durchzuführen, in welcher im Detail untersucht wird, welche Flächen genau benötigt und genutzt werden könnten, um das Wärmenetz zu speisen. Auch der Leitungsverlauf und die Dimensionierung von Speichern gehört dazu. Im Ergebnis würde sich dann ein potenzieller Wärmevollgestehungspreis des Netzes ergeben. Dieser würde dann die Möglichkeit eröffnen mit den Bürgern über die Bereitschaft eines Anschlusses an das Wärmenetz zu diskutieren. Wenn all diese Aspekte positiv verlaufen, könnte ein Wärmenetzaufbau vorangetrieben werden und auch dafür potenziell Fördermittel eingeworben werden. Falls sich ein Wärmenetz als nicht zielführend herausstellt, müsste der Fokus mehr auf Wärmepumpen und ggf. Hybrid-Wärmepumpen und Biomasseheizungen liegen.

6.3.12 Morscheid

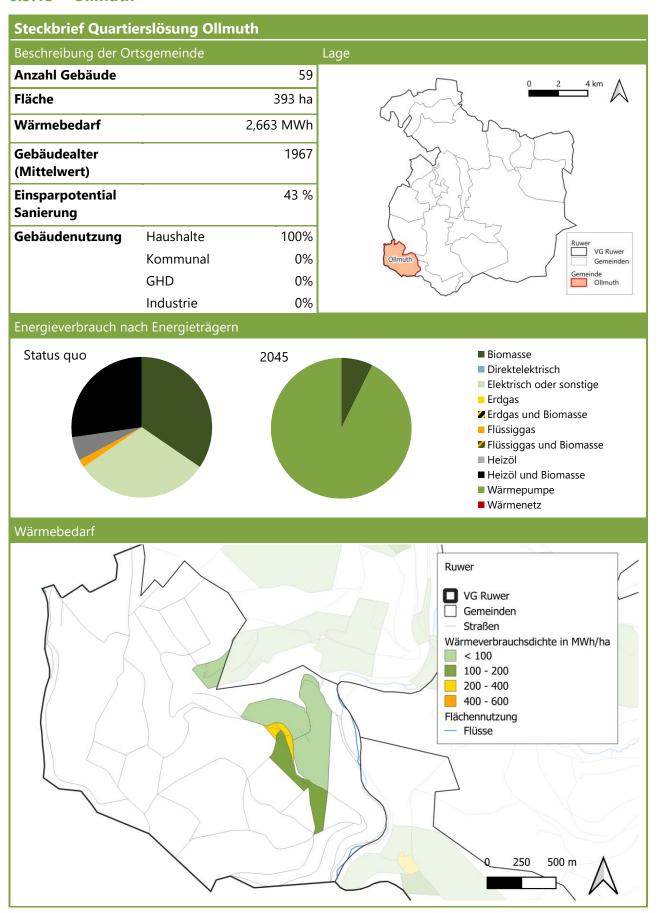
Morscheid weist einen Wärmebedarf von 13234 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 96 % bestimmt. In einigen Bereichen liegt eine hohe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit hoch genug für Wärmenetze ist. Dies ermöglicht die potenziellen Verteilungsverluste gering zu halten, was die Installation und den Betrieb eines zentralen Wärmenetzes wirtschaftlich attraktiver macht.

Daher werden folgende Maßnahmen empfohlen:

- 1. Prüfung des Aufbaus eines Wärmenetzes mittels einer BEW-Machbarkeitsstudie.
- 2. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 291 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 3. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 4. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1975. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 318 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 35 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Morscheid wird in etwa 318 Gebäuden eine dezentrale Wärmeversorgung empfohlen. 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden. 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Morscheid hat partiell eine hohe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung grundsätzlich geeignet. Als Energiequellen könnten sich insbesondere eine Spitzenlastabdeckung durch Gas und Biomasse (Bspw. vom Naumeshof) anbieten. Es wird empfohlen eine Machbarkeitsstudie durchzuführen, in welcher im Detail untersucht wird, welche Flächen genau benötigt und genutzt werden könnten, um das Wärmenetz zu speisen. Auch der Leitungsverlauf und die Dimensionierung von Speichern gehört dazu. Im Ergebnis würde sich dann ein potenzieller Wärmevollgestehungspreis des Netzes ergeben. Dieser würde dann die Möglichkeit eröffnen mit den Bürgern über die Bereitschaft eines Anschlusses an das Wärmenetz zu diskutieren. Wenn all diese Aspekte positiv verlaufen, könnte ein Wärmenetzaufbau vorangetrieben werden und auch dafür potenziell Fördermittel eingeworben werden. Falls sich ein Wärmenetz als nicht zielführend herausstellt, müsste der Fokus mehr auf Wärmepumpen und ggf. Hybrid-Wärmepumpen und Biomasseheizungen liegen.

6.3.13 Ollmuth

Ollmuth weist einen Wärmebedarf von 2663 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 100 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

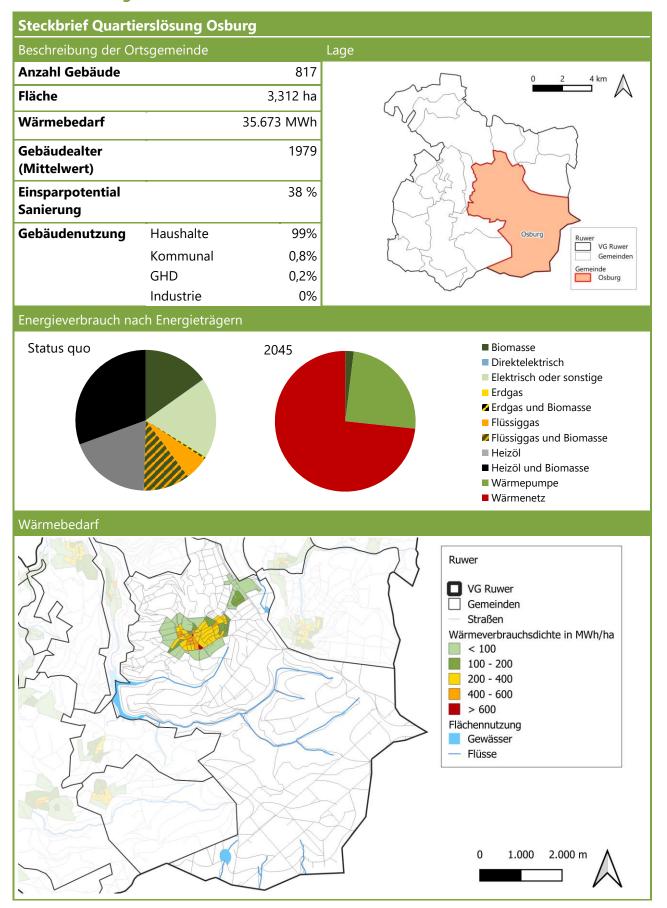
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 55 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1967. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 59 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 43 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Ollmuth wird in etwa 59 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Ollmuth hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.14 Osburg

Osburg weist einen Wärmebedarf von 35673 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. In einigen Bereichen liegt eine hohe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit hoch genug für Wärmenetze ist. Dies ermöglicht die potenziellen Verteilungsverluste gering zu halten, was die Installation und den Betrieb eines zentralen Wärmenetzes wirtschaftlich attraktiver macht.

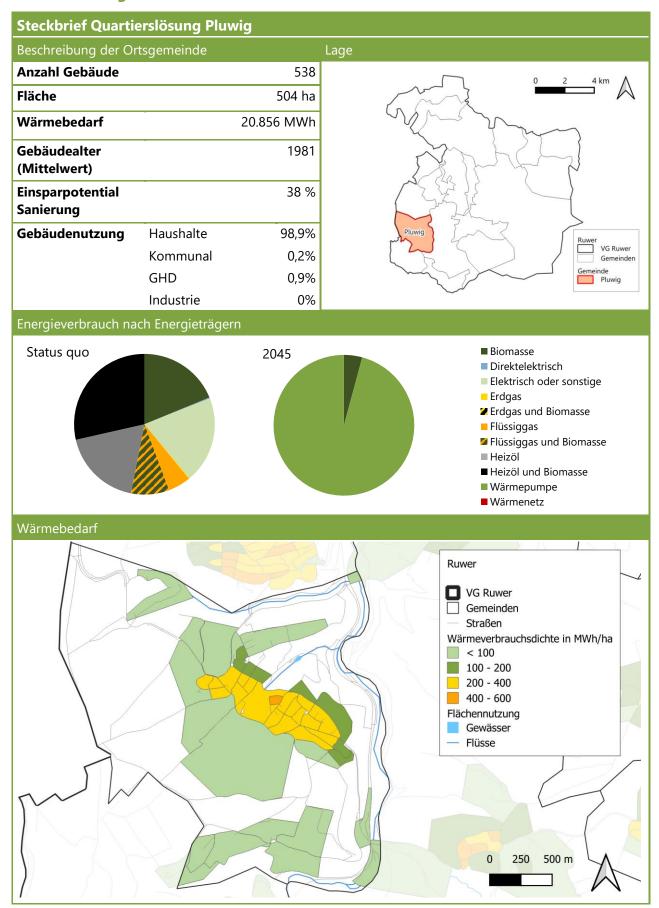
Daher werden folgende Maßnahmen empfohlen:

- 1. Prüfung des Aufbaus eines Wärmenetzes mittels einer BEW-Machbarkeitsstudie.
- 2. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 207 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 3. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 4. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1979. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 817 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 38 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Osburg wird in etwa 224 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Osburg hat partiell eine hohe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung grundsätzlich geeignet. Als Energiequellen könnten sich insbesondere die Rivertalsperre, Solarthermie und eine Spitzenlastabdeckung durch Gas und Biomasse anbieten. Es wird empfohlen eine Machbarkeitsstudie durchzuführen, in welcher im Detail untersucht wird, welche Flächen genau benötigt und genutzt werden könnten, um das Wärmenetz zu speisen. Auch der Leitungsverlauf und die Dimensionierung von Speichern gehört dazu. Im Ergebnis würde sich dann ein potenzieller Wärmevollgestehungspreis des Netzes ergeben. Dieser würde dann die Möglichkeit eröffnen mit den Bürgern über die Bereitschaft eines Anschlusses an das Wärmenetz zu diskutieren. Wenn all diese Aspekte positiv verlaufen, könnte ein Wärmenetzaufbau vorangetrieben werden und auch dafür potenziell Fördermittel eingeworben werden. Falls sich ein Wärmenetz als nicht zielführend herausstellt, müsste der Fokus mehr auf Wärmepumpen und ggf. Hybrid-Wärmepumpen und Biomasseheizungen liegen.

6.3.15 Pluwig

Pluwig weist einen Wärmebedarf von 20856 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

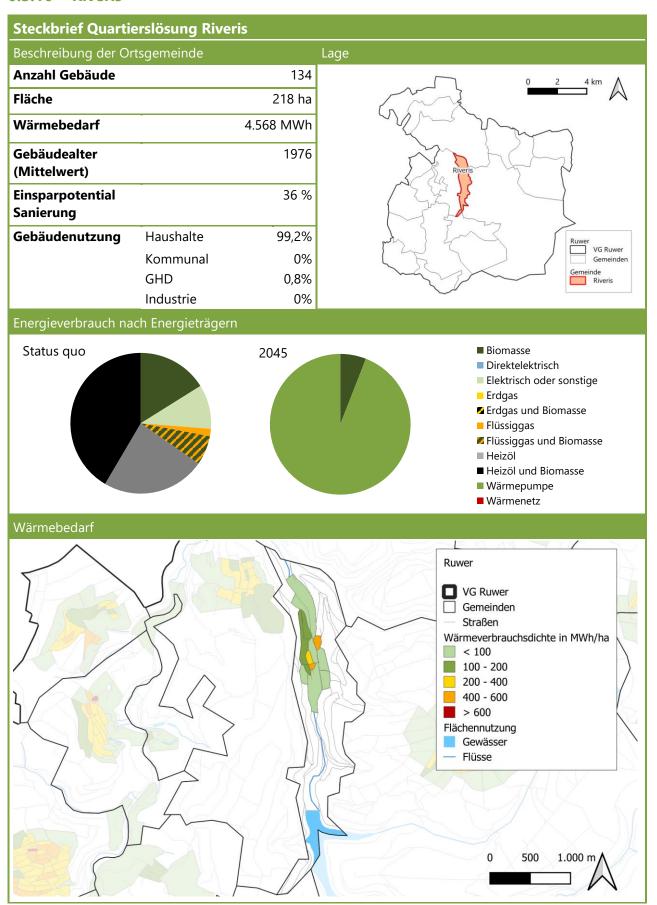
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 513 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1981. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 538 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 38 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Pluwig wird in etwa 538 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Pluwig hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.16 Riveris

Riveris weist einen Wärmebedarf von 4568 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

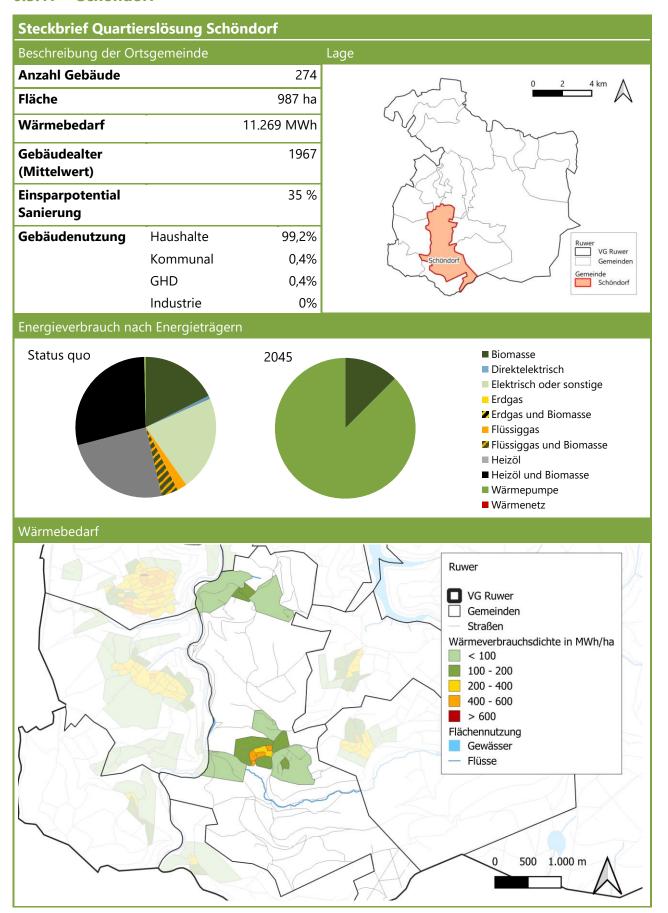
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 127 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1976. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 134 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 36 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Riveris wird in etwa 134 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Riveris hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.17 Schöndorf

Schöndorf weist einen Wärmebedarf von 11269 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

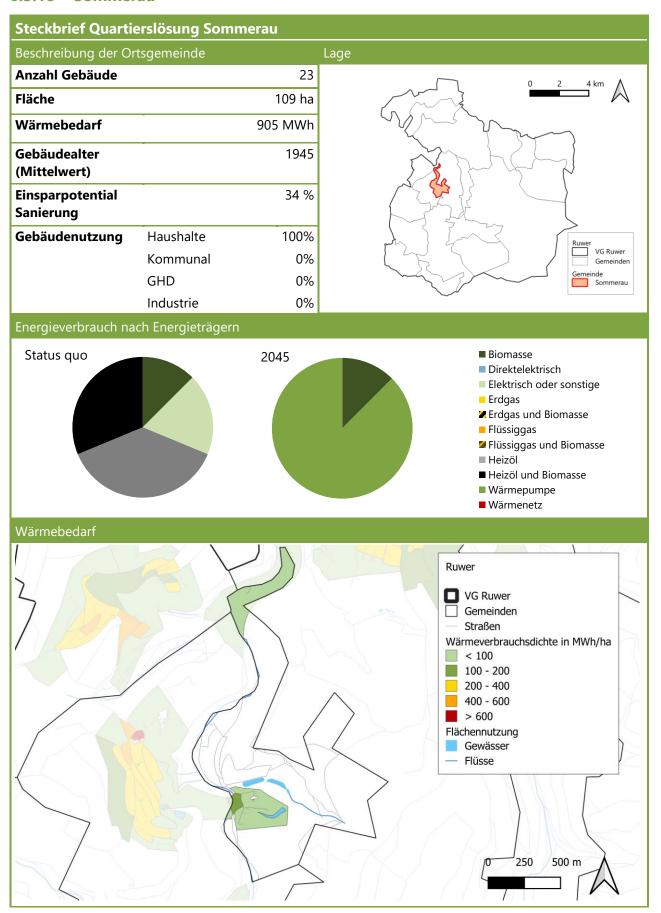
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 254 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1967. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 274 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 35 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Schöndorf wird in etwa 274 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Schöndorf hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.18 Sommerau

Sommerau weist einen Wärmebedarf von 905 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 100 % bestimmt. Es liegt weitestgehend eine geringe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit relativ niedrig ist. Dies würde in Wärmenetzen zu hohen Verteilungsverlusten führen und macht die Installation und den Betrieb eines zentralen Wärmenetzes unwirtschaftlich.

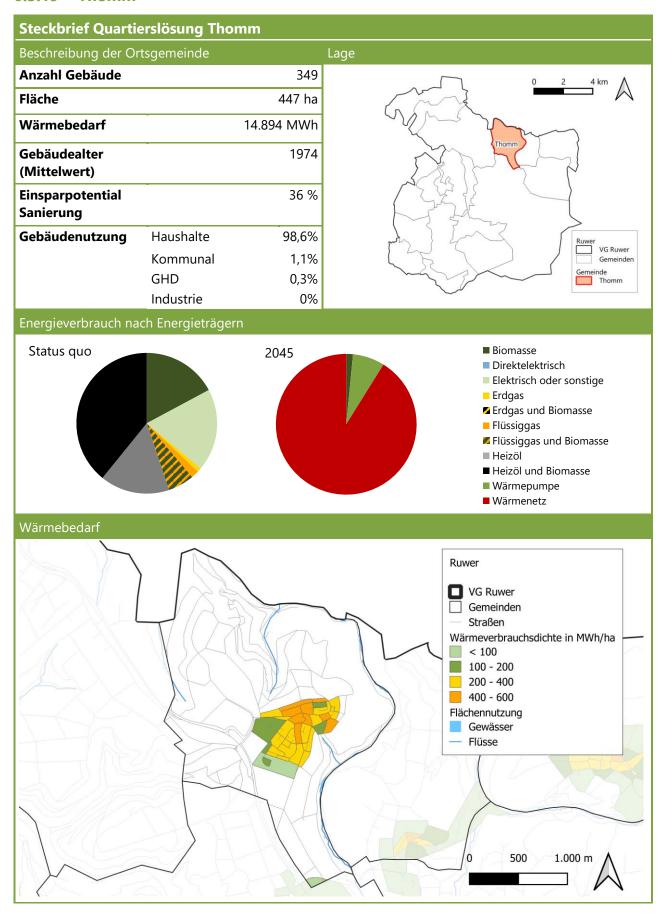
Daher werden folgende Maßnahmen empfohlen:

- 1. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 21 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 2. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 3. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1945. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 23 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 34 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Sommerau wird in etwa 23 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Sommerau hat eine geringe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung weniger geeignet. Die hohen Investitionskosten für den Aufbau eines Wärmenetzes im Vergleich zu dem potenziellen Verbrauch und die hohen Verteilungsverluste machen dies wirtschaftlich unattraktiv.

6.3.19 Thomm

Thomm weist einen Wärmebedarf von 14894 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 99 % bestimmt. In einigen Bereichen liegt eine hohe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit hoch genug für Wärmenetze ist. Dies ermöglicht die potenziellen Verteilungsverluste gering zu halten, was die Installation und den Betrieb eines zentralen Wärmenetzes wirtschaftlich attraktiver macht.

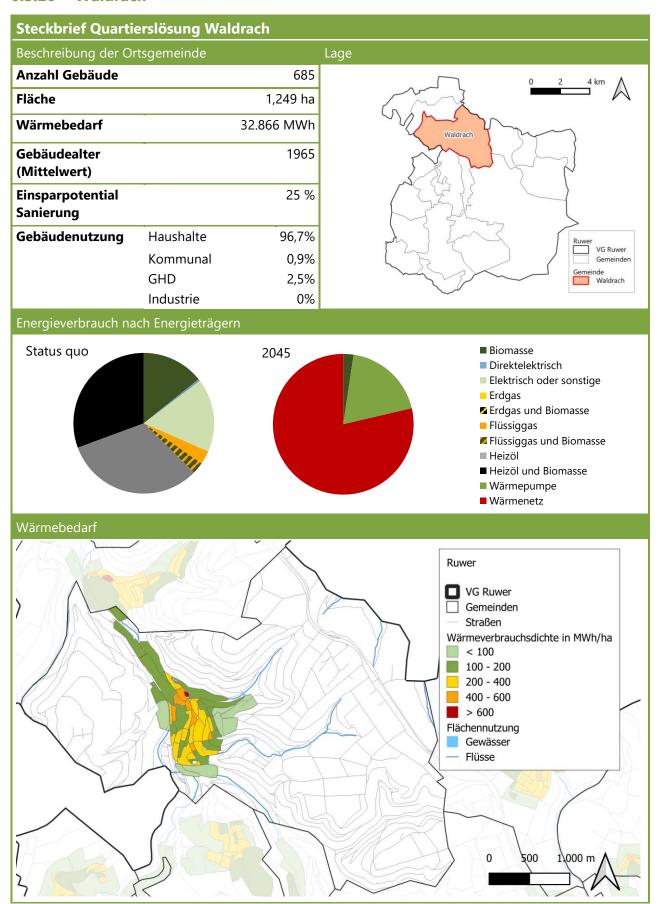
Daher werden folgende Maßnahmen empfohlen:

- 1. Prüfung des Aufbaus eines Wärmenetzes mittels einer BEW-Machbarkeitsstudie.
- 2. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 25 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 3. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 4. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1974. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 349 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 36 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Thomm wird in etwa 30 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.


Zentrale Wärmeversorgung

Thomm hat partiell eine hohe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung grundsätzlich geeignet. Als Energiequellen könnten sich insbesondere Geothermie, Solarthermie und eine Spitzenlastabdeckung durch Gas und Biomasse anbieten. Es wird empfohlen eine Machbarkeitsstudie durchzuführen, in welcher im Detail untersucht wird, welche Flächen genau benötigt und genutzt werden könnten, um das Wärmenetz zu speisen. Auch der Leitungsverlauf und die Dimensionierung von Speichern gehört dazu. Im Ergebnis würde sich dann ein potenzieller Wärmevollgestehungspreis des Netzes ergeben. Dieser würde dann die Möglichkeit eröffnen mit den Bürgern über die Bereitschaft eines Anschlusses an das Wärmenetz zu diskutieren. Wenn all diese Aspekte positiv verlaufen, könnte ein Wärmenetzaufbau vorangetrieben werden und auch dafür potenziell Fördermittel eingeworben werden. Falls sich ein Wärmenetz als nicht zielführend herausstellt, müsste der Fokus mehr auf Wärmepumpen und ggf. Hybrid-Wärmepumpen und Biomasseheizungen liegen.

6.3.20 Waldrach

Waldrach weist einen Wärmebedarf von 32866 MWh auf. Dieser wird insbesondere durch den Sektor der Haushalte mit 97 % bestimmt. In einigen Bereichen liegt eine hohe Wärmebedarfsdichte vor, was bedeutet, dass der Wärmebedarf pro Flächeneinheit hoch genug für Wärmenetze ist. Dies ermöglicht die potenziellen Verteilungsverluste gering zu halten, was die Installation und den Betrieb eines zentralen Wärmenetzes wirtschaftlich attraktiver macht.

Daher werden folgende Maßnahmen empfohlen:

- 1. Prüfung des Aufbaus eines Wärmenetzes mittels einer BEW-Machbarkeitsstudie.
- 2. Dezentrale elektrische Wärmepumpen: Installation von Wärmepumpen in ca. 129 Gebäuden. Diese nutzen die Umgebungswärme (Luft, Wasser, Erdreich) und wandeln sie in nutzbare Wärme um. Dadurch wird der Bedarf an fossilen Brennstoffen reduziert und die CO₂-Emissionen sinken.
- 3. Biomasseanlagen: Nutzung dezentraler Biomasseanlagen, die möglichst lokale Ressourcen wie Holzpellets oder -hackschnitzel nutzen, um Wärme in den verbleibenden Gebäuden zu erzeugen, in welchen eine Wärmepumpe voraussichtlich nicht ohne weiteres installierbar ist.
- 4. Energetische Sanierung: Die Gebäude haben im Mittel ein Baujahr von 1965. Es wird empfohlen, die Durchführung von energetischen Sanierungsmaßnahmen an den bestehenden 685 Gebäuden zur Reduzierung des Wärmebedarfs um bis zu 25 % voranzutreiben. Dies umfasst die Verbesserung der Wärmedämmung, den Austausch von Fenstern und Türen sowie die Modernisierung der Heiztechnik.

Dezentrale Wärmeversorgung

In Waldrach wird in etwa 147 Gebäuden eine dezentrale Wärmeversorgung empfohlen.

- 1. Wärmepumpen sind für freistehende Gebäude oft gut geeignet. Sie können individuell in Gebäuden installiert werden und nutzen elektrische Energie zur Gewinnung von Umgebungswärme. Die Installation ist relativ einfach und kostengünstig. Gegebenenfalls ist eine Vergrößerung der Heizkörperfläche notwendig, um eine geringere Vorlauftemperatur zu ermöglichen und damit die Effizienz der Wärmepumpe zu erhöhen. Durch die Nutzung von Strom aus erneuerbaren Energien kann die Wärmeversorgung nahezu klimaneutral gestaltet werden.
- 2. Biomasseanlagen: Dezentrale Biomasseanlagen bieten eine weitere Möglichkeit zur klimaneutralen Wärmeversorgung. Sie können lokale Biomasseressourcen, wie Holzpellets oder landwirtschaftliche Abfälle, nutzen, um Wärme zu erzeugen.

Zentrale Wärmeversorgung

Waldrach hat partiell eine hohe Wärmebedarfsdichte, daher ist eine zentrale Wärmeversorgung grundsätzlich geeignet. Als Energiequellen könnten sich insbesondere Abwasser + Biomasse (ggf. inkl. Naumeshof) und eine Spitzenlastabdeckung durch Gas und Biomasse anbieten. Es wird empfohlen eine Machbarkeitsstudie durchzuführen, in welcher im Detail untersucht wird, welche Flächen genau benötigt und genutzt werden könnten, um das Wärmenetz zu speisen. Auch der Leitungsverlauf und die Dimensionierung von Speichern gehört dazu. Im Ergebnis würde sich dann ein potenzieller Wärmevollgestehungspreis des Netzes ergeben. Dieser würde dann die Möglichkeit eröffnen mit den Bürgern über die Bereitschaft eines Anschlusses an das Wärmenetz zu diskutieren. Wenn all diese Aspekte positiv verlaufen, könnte ein Wärmenetzaufbau vorangetrieben werden und auch dafür potenziell Fördermittel eingeworben werden. Falls sich ein Wärmenetz als nicht zielführend herausstellt, müsste der Fokus mehr auf Wärmepumpen und ggf. Hybrid-Wärmepumpen und Biomasseheizungen liegen.

6.4 Darstellung der Umsetzungsstrategie und von Umsetzungsmaßnahmen

Die Transformationsstrategie zeigt zu realisierende Umsetzungsmaßnahmen, mit denen das Ziel der Versorgung mit ausschließlich aus erneuerbaren Energien oder unvermeidbarer Abwärme erzeugter Wärme bis zum Zieljahr erreicht werden kann.

Die Kommunalverwaltung der Verbandsgemeinde Ruwer strebt eine nachhaltige und klimafreundliche Wärmeversorgung an, indem sie dabei unterstützt den Einsatz von Ölheizungen schrittweise zu reduzieren und durch Wärmenetze und Wärmepumpen zu ersetzen. Ergänzende Technologien wie Biomasse und Solarthermie sollen dabei zudem Rolle spielen. Diese Strategie beschreibt die Schritte und Maßnahmen von 2024 bis 2045, um dieses Ziel zu erreichen.

6.4.1 Wärmenetzplanung und -bau

Schritt 1: Planung und Durchführung von Machbarkeitsstudien (Zeitraum: ca. 2025-2026)

Planung, Beantragung und Durchführung von Machbarkeitsstudien durch BEW zur Einführung von Wärmenetzen in den Gemeinden Gusterath, Mertesdorf, Morscheid, Osburg, Thomm und Waldrach.

Kosten und Kostenträger: Die Kosten für die Antragstellung werden durch die VG Ruwer gedeckt. Für die Erstellung von Machbarkeitsstudien können bis zu 50 % der Kosten über BEW gefördert werden

Positive Auswirkungen der Maßnahmen: Diese Maßnahme ist als Folgeschritt der Wärmeplanung erheblich wichtig, um die Wärmenetze konkreter zu planen und die Wirtschaftlichkeit zu analysieren. Zudem können durch die Erstellung einer Machbarkeitsstudie weitere Fördermittel für den Bau und den Betrieb des Wärmenetzes eingeholt werden.

Schritt 2: Konkrete Projektierung und Bau (2027-2035)

Konkrete Projektierung und Bau von Wärmenetzen: Entwicklung detaillierter Pläne für den Bau von Wärmenetzen in Waldrach und Mertesdorf als erste Pilotprojekte, basierend auf BEW-Machbarkeitsstudien. Identifikation und Sicherung von Fördermitteln auf Landes-, Bundes- und EU-Ebene zur Finanzierung der Infrastruktur.

Pilotprojekte für Wärmepumpen: Installation von Wärmepumpen in ausgewählten öffentlichen Gebäuden und Wohngebieten zur Demonstration der Technologie und zur Schaffung von Best-Practice-Beispielen.

Integration von Solarthermie und Biomasse: Bau von Solarthermieanlagen zur Unterstützung der Wärmenetze. Einrichtung von Biomasseheizwerken, um lokale Biomasseressourcen zu nutzen.

Kosten: Die Entwicklung detaillierter Pläne für den Bau umfasst verschiedene Kostenposten. Zu den wesentlichen Kosten gehören die Planung und Projektierung, die Baukosten für das Wärmenetz, Kosten für den Erwerb von Grundstücken oder für Nutzungsrechte und die Installation der benötigten Technik. Weitere Kostenpunkte können die Genehmigungskosten, Kosten für die Bauüberwachung, und Kosten für die Inbetriebnahme und Schulung des Personals umfassen. Die konkreten Kosten können im Rahmen der kommunalen Wärmeplanung nicht ermittelt werden, sondern wären Teil einer Machbarkeitsstudie.

Positive Auswirkungen der Maßnahmen: Die positiven Auswirkungen der Maßnahmen umfassen eine erhebliche Reduzierung des CO₂-Ausstoßes durch die Umstellung auf erneuerbare Energien wie Solarthermie, Geothermie und Biomasse. Der Bau von Wärmenetzen verringert die Abhängigkeit von fossilen Brennstoffen. Zudem werden durch den Einsatz modernster Technologien wie Wärmepumpen und Solarthermie innovative Projekte geschaffen, die zur regionalen Energiewende beitragen. Langfristig führen diese Maßnahmen zu stabileren Energiekosten und stärken die lokale Wertschöpfung durch die Nutzung regionaler Ressourcen.

Schritt 3: Verdichtung und Optimierung (2031-2040)

Ausbau der Wärmenetze: Erweiterung der Wärmenetze bei Eignung auf die Gemeinden Thomm, Osburg, Morscheid und Gusterath basierend auf den Erfahrungen und Erfolgen der Pilotprojekte. Optimierung der bestehenden Netze in Waldrach und Mertesdorf, um Effizienz und Versorgungssicherheit zu erhöhen.

Förderung und Finanzierung: Fortsetzung der aktiven Suche nach Fördermitteln und finanziellen Anreizen für den Ausbau und die Optimierung der Wärmenetze und Wärmepumpeninstallationen.

Technologiemix: Weiterer Ausbau von Solarthermieanlagen zur Unterstützung der Wärmeversorgung. Integration von Wasserstofftechnologien, sofern wirtschaftlich und technologisch machbar, zur weiteren Diversifizierung der Wärmequellen.

Schritt 4: Finaler Ausbau und Klimaneutralität (2041-2045)

Vollständiger Ersatz von Ölheizungen: Abschluss des schrittweisen Ausstiegs aus der Nutzung von Ölheizungen. Sicherstellung, dass alle verbleibenden Gebäude auf erneuerbare Wärmequellen umgestellt sind.

Klimaneutralität: Überprüfung und Anpassung der Wärmenetze und Wärmepumpen, um sicherzustellen, dass die VG Ruwer ihre Klimaziele erreicht und klimaneutral wird. Laufende Evaluation und Optimierung der Systeme zur Sicherstellung höchster Effizienz und Nachhaltigkeit.

6.4.2 Bürgerbeteiligung und Information

Durchführung von Informationsveranstaltungen und Workshops, um die Bevölkerung über die Vorteile der neuen Technologien und die geplanten Maßnahmen zu informieren. Einrichtung einer Anlaufstelle für Bürgerfragen und Unterstützung bei der Beantragung von Fördermitteln.

Schulung und Weiterbildung: Schulungsprogramme für lokale Handwerksbetriebe und Installateure zur fachgerechten Installation und Wartung der neuen Systeme. Kooperation mit Schulen und Bildungseinrichtungen zur Sensibilisierung für erneuerbare Energien.

Durch diese strukturierte und umfassende Transformationsstrategie kann die VG Ruwer bis 2045 eine klimaneutrale Wärmeversorgung erreichen und gleichzeitig die Lebensqualität und Umweltfreundlichkeit in den Gemeinden erhöhen.

6.4.3 Wärmepumpenhochlauf fördern

Wärmepumpen sind wie auch in der Technologiepriorisierung beschrieben eine der besten Optionen zur Defossilisierung der Wärmeversorgung. Die Verbandsgemeinde selbst, hat nur bedingt die

Möglichkeit den Wärmepumpenhochlauf zu fördern. Es könnte eine Beratung angeboten werden und der Diskurs mit den Heizungsinstallateuren gesucht werden, um die objektive Einordnung zu verstärken. Auch Energieberater sind in dem Zusammenhang entscheidend, da diese den Bürgern vor Ort bzw. zuhause helfen die richtigen Entscheidung im Rahmen der gesetzlichen Möglichkeiten zu finden.

Jedoch sind auch landes- oder bundesweite Förderprogramme notwendig, um die Mehrkosten gegenüber anderen Systemen zu decken und so eine sozialverträgliche Wärmewende zu ermöglichen.

6.4.4 Beratung für Sanierungsförderungen anbieten/vermitteln

Auch bei der Beratung für energetisches Sanieren und Förderungen in diesem Zusammenhang sind mehrere Akteure gefragt. Die Verbandsgemeinde selbst, kann prüfen, inwiefern es bereits Beratungsangebote gibt und ggf. zu Energieberater außerhalb der Verbandsgemeinde vermitteln. Diese Beratung kann dabei unterstützen, die passenden Fördermittel für verschiedene Sanierungsmaßnahmen zu identifizieren, wie etwa den Austausch von Fenstern, die Dämmung von Fassaden oder den Einsatz erneuerbarer Energien. Das Angebot umfasst in der Regel die Analyse des Sanierungsbedarfs, die Aufklärung über Fördermöglichkeiten, die Unterstützung bei der Beantragung von Fördergeldern und die Vermittlung an geeignete Fachbetriebe. Ziel ist es, den Zugang zu Förderungen zu erleichtern, energetische Sanierungen finanziell attraktiver zu machen und so die Energieeffizienz von Gebäuden zu steigern und zur Reduzierung von CO₂-Emissionen beizutragen.

6.5 Zusammenfassung der Strategie

Die Wärmewende ist eine gesamtgesellschaftliche Herausforderung. Von den etablierten öl- und gasbasierten Heizungen hin zu einer klimaneutralen Wärmeversorgung zu kommen, ist eine große Herausforderung.

In der Verbandsgemeinde Ruwer betrifft dies insbesondere die ölbasierten Heizungen, welche in der ländlichen Struktur oft auch in einer Kombination mit einem Kaminofen vorkommen. Um eine klimaneutrale Wärmeversorgung auszugestalten, gibt es nur wenige Optionen. Dabei sind insbesondere Wärmepumpen und Wärmenetze die vielversprechendsten Versorgungsarten. Ländliche Strukturen mit einer lockeren Bebauung eignen sich grundsätzlich eher weniger für eine rohrleitungsgebundene Wärmeversorgung, da die Verluste oft zu hoch sind und damit die Kosten für die Wärme überproportional groß sind.

Die Untersuchung und die Analyse in dieser kommunalen Wärmeplanung zeigt auf, dass sich die Ortskerne der Gemeinden Gusterath, Mertesdorf, Morscheid, Osburg, Thomm und Waldrach aufgrund der Wärmebedarfsdichte und der Potenziale aus erneuerbaren Wärmequellen für Wärmenetze eignen könnten. Die Wärmeplanung gibt wie beschrieben jedoch noch keine Gewissheit, ob die Wärmenetze wirklich entstehen, sondern stellt einen strategischen Plan und eine Empfehlung dar, diese potenziellen Wärmenetze in einer Machbarkeitsstudie im Detail zu planen und die Wirtschaftlichkeit zu berechnen. Erst dann kann in einem detaillierten Diskurs mit den Bürgern die Anschlussbereitschaft eruiert werden. Denn nur wenn die Wirtschaftlichkeit gegeben ist und die Bürger von dem Konzept überzeugt sind, schließen sich genügend Haushalte an das Wärmenetz an und erst dann kann die Wirtschaftlichkeit auch erzielt werden.

Die meisten der Gebäude, die nicht in den potenziellen Wärmenetzeignungseignungsgebieten liegen, weisen nach der beschriebenen Methode eine Eignung für Wärmepumpen auf. Dabei kann in der vorliegenden flächendeckenden Betrachtung der Verbandsgemeinde jedoch keine gesicherte Aussage der Eignung Gebäude und ggf. notwendigen Maßnahmen im Zusammenhang mit dem Einbau von Wärmepumpen getroffen werden.

Da sich Hybrid-Wärmepumpen in der Wirtschaftlichkeitsanalyse in den vorliegenden Gebäuden in der Regel nicht als nächstbeste Lösung herausgestellt haben, sollte bei Gebäuden, die weder für Wärmepumpen geeignet sind noch in Wärmenetzeignungsgebieten liegen, insbesondere biomassebasierte Heizungen, wie Pelletheizungen, als Wärmeversorgungssystem in Erwägung gezogen werden.

7 Verstetigungskonzept

Die Umsetzung einer nachhaltigen und zukunftsfähigen Wärmeversorgung in der Verbandsgemeinde Ruwer erfordert eine Verstetigungsstrategie. Diese Strategie stellt sicher, dass die einmal angestoßenen Projekte langfristig wirken und kontinuierlich weiterentwickelt werden. Dabei spielen verschiedene Akteure eine zentrale Rolle, die mit klar definierten Aufgaben zur erfolgreichen Umsetzung der Wärmewende beitragen.

7.1 Aufgaben der Akteure

In Tabelle 7 ist eine Übersicht der verschiedenen Akteure und ihrer Aufgaben zur Umsetzung der Wärmewende dargestellt. Die Kommunalverwaltung übernimmt die zentrale Rolle in der Koordination und Steuerung der Wärmeplanung. Sie fungiert als Schnittstelle zwischen den verschiedenen Akteuren und stellt sicher, dass alle Aktivitäten im Einklang mit den übergeordneten Zielen stehen. Zudem ist sie für das Fördermittelmanagement verantwortlich, indem sie Fördermittel auf Landes-, Bundes- und EU-Ebene identifiziert und beantragt. Energieversorger sind für die technische Umsetzung zuständig, einschließlich Planung, Bau und Betrieb von Wärmenetzen sowie der Integration erneuerbarer Energien wie Solarthermie, Geothermie und Biomasse. Sie bieten auch Beratung und Unterstützung für private Haushalte und Gewerbebetriebe bei der Nutzung und Umstellung auf erneuerbare Wärmequellen. Bürgerinnen und Bürger sollen sich aktiv an Planungsprozessen und Informationsveranstaltungen beteiligen, um die Akzeptanz und Unterstützung für die Projekte zu erhöhen. Sie müssen auch in erneuerbare Heizsysteme wie Wärmepumpen oder Solarthermieanlagen im privaten Bereich investieren. Wohnungsbaugesellschaften und Immobilienentwickler sollten die Wärmeplanung bei der Errichtung neuer Wohn- und Gewerbegebäude, um von Anfang an eine nachhaltige Wärmeversorgung zu gewährleisten, berücksichtigen. Handwerksbetriebe und Fachfirmen sind für die Installation, Wartung und Reparatur von Wärmeversorgungssystemen zuständig und bieten fachkundige Beratung für Haushalte und Unternehmen zur Auswahl und Implementierung der besten Heizlösungen. Finanzinstitute stellen maßgeschneiderte Finanzierungslösungen und Kredite für Investitionen in erneuerbare Wärmetechnologien bereit und beraten zu verfügbaren Förderprogrammen und unterstützen bei der Beantragung.

Tabelle 7: Aufgaben der Akteure

Akteur	Aufgaben	
Kommunalver- waltung	Koordination und Steuerung: Die Kommunalverwaltung übernimmt die zentrale Rolle in der Koordination und Steuerung der Wärmeplanung. Sie fungiert als Schnittstelle zwischen den verschiedenen Akteuren und stellt sicher, dass alle Aktivitäten im Einklang mit den übergeordneten Zielen stehen.	Fördermittelmanagement: Identifikation und Be- antragung von Fördermitteln auf Landes-, Bun- des- und EU-Ebene zur Finanzierung der Pro- jekte.
Energieversor- ger	Technische Umsetzung: Planung, Bau und Betrieb von Wärmenetzen sowie der Integration erneuerbarer Energien wie Solarthermie, Geothermie und Biomasse.	Beratung und Unterstützung: Bereitstellung von Expertise und Beratung für private Haushalte und Gewerbebetriebe hinsichtlich der Nutzung und Umstellung auf erneuerbare Wärmequellen.
Bürger	Aktive Beteiligung an Planungsprozessen und Informationsveranstaltungen, um die Akzeptanz und Unterstützung für die Projekte zu erhöhen.	Eigene Investitionen: Investitionen in erneuer- bare Heizsysteme wie Wärmepumpen oder So- larthermieanlagen im privaten Bereich.

Wohnungs- baugesell- schaften und Immobilien- entwickler	Integration in Neubauten: Berücksichtigung der Wärmeplanung bei der Errichtung neuer Wohn- und Gewerbegebäude, um von Anfang an eine nachhaltige Wärmeversorgung zu gewährleisten.	Sanierung und Nachrüstung: Durchführung von energetischen Sanierungen bestehender Ge- bäude und Nachrüstung mit modernen, erneuer- baren Heizsystemen.
Handwerksbe- triebe und Fachfirmen	Installation und Wartung: Installation, Wartung und Reparatur von Wärmeversorgungssystemen. Hierbei spielen die Weiterbildung und Speziali- sierung der Mitarbeiter eine wichtige Rolle.	Beratung: Fachkundige Beratung von Haushalten und Unternehmen zur Auswahl und Implemen- tierung der besten Heizlösungen.
Finanzinstitute	Finanzierungslösungen: Bereitstellung von maß- geschneiderten Finanzierungslösungen und Kre- diten für Investitionen in erneuerbare Wärme- technologien.	Fördermittelberatung: Beratung zu verfügbaren Förderprogrammen und Unterstützung bei der Beantragung.

7.2 Maßnahmen zur Verstetigung

Die Verstetigungsstrategie für die kommunale Wärmeplanung in der Verbandsgemeinde Ruwer setzt auf die Zusammenarbeit aller relevanten Akteure. Durch klar definierte Aufgaben und kontinuierliche Anpassungen kann die Wärmewende erfolgreich und nachhaltig gestaltet werden.

- 1. Langfristige Planung und Monitoring: Entwicklung eines langfristigen Wärmeplans mit klar definierten Meilensteinen und regelmäßiger Überprüfung des Fortschritts.
- 2. Bildung und Aufklärung: Kontinuierliche Bildungs- und Aufklärungskampagnen für die Bevölkerung und beteiligte Akteure.
- 3. Netzwerke und Kooperationen: Aufbau und Pflege von Netzwerken zwischen den Akteuren, um den Austausch von Wissen und Erfahrungen zu fördern.
- 4. Transparenz und Kommunikation: Offene und transparente Kommunikation über Fortschritte, Herausforderungen und Erfolge der Wärmeplanung.
- 5. Anpassungsfähigkeit: Flexibilität und Bereitschaft zur Anpassung der Strategien basierend auf neuen Erkenntnissen und technologischen Entwicklungen.

Klare Ziele und Leistungskennzahlen werden festgelegt. Zum Beispiel

8 Controllingkonzept

Ziele und Kennzahlen definieren

Teil dieser Position ist die Erstellung eines Controlling-Konzeptes zur Zielerreichung inklusive Indikatoren und Rahmenbedingungen für Datenerfassung und -auswertung.

der EE-Anteil in der Wärmeversorgung. Verantwortlichkeiten festlegen Klare Verantwortlichkeiten für die Umsetzung werden festgelegt. Sowohl intern (Kommunalverwaltung) als auch mit externen Partnern. Budgetierung und Finanzierung Ohne ausreichende finanzielle Mittel ist eine Umsetzung nicht möglich. Insbesondere Fördermöglichkeiten werden dargelegt. Kommunikation und Akteure Bürger und Interessengruppen werden kontinuierlich über den Wärmeplan informiert und beteiligen sich an der Umsetzung. Monitoring und Reporting Mit einem Monitoring wird regelmäßig der Fortschritt der Umsetzung verfolgt. Insbesondere anhand der Leistungskennzahlen. Anpassung und Optimierung Pläne ändern sich, wenn sich Rahmenbedingungen ändern. Die kontinuierliche Optimierung ist ein wichtiger Bestandteil des Prozesses. Langfristige Perspektive Neben der kurzfristen Betrachtung dürfen die Langfristziele dabei nicht aus den Augen verloren werden.

Ein effektives Controlling-Konzept ist unerlässlich, um die Umsetzung der kommunalen Wärmeplanung zu überwachen und sicherzustellen, dass die gesetzten Ziele erreicht werden. Dieses Konzept umfasst regelmäßige Überprüfungen, die Analyse von Kennzahlen sowie die Identifikation von Abweichungen und entsprechenden Korrekturmaßnahmen. Es stellt sicher, dass die Projekte zur Wärmewende kontinuierlich optimiert und an veränderte Bedingungen angepasst werden.

8.1 Akteursübergreifende Aufgaben

- 1. Zieldefinition und Kennzahlen
 - Festlegung der Ziele: Definition klarer, messbarer Ziele für die Wärmeplanung (z.B. Reduktion von CO₂-Emissionen, Anteil erneuerbarer Energien an der Wärmeversorgung, Anzahl der neu installierten Wärmepumpen).
 - Kennzahlen (KPIs): Entwicklung von Kennzahlen zur Messung des Fortschritts (z.B. Energieverbrauch pro Haushalt, Kosten pro erzeugter Wärmeeinheit, Anzahl der angeschlossenen Haushalte an Wärmenetze).
- 2. Datenerhebung und -analyse
 - Datenerhebung: Systematische Erhebung relevanter Daten durch die Kommunalverwaltung, Energieversorger und andere Akteure.
 - Datenanalyse: Regelmäßige Analyse der erhobenen Daten zur Überprüfung der Zielerreichung und Identifikation von Abweichungen.
- 3. Reporting und Kommunikation
 - Regelmäßiges Reporting: Erstellung regelmäßiger Berichte (z.B. jährlich) zur Darstellung des Fortschritts gegenüber den definierten Zielen und Kennzahlen.
 - Transparente Kommunikation: Offene Kommunikation der Ergebnisse an alle beteiligten Akteure und die Öffentlichkeit zur Förderung von Transparenz und Akzeptanz.
- 4. Abweichungsanalyse und Korrekturmaßnahmen

- Abweichungsanalyse: Identifikation und Analyse von Abweichungen zwischen den Soll- und Ist-Werten der Kennzahlen.
- Korrekturmaßnahmen: Entwicklung und Implementierung von Maßnahmen zur Korrektur identifizierter Abweichungen und zur Optimierung der Prozesse.
- 5. Regelmäßige Überprüfung und Anpassung
 - Kontinuierliche Verbesserung: Regelmäßige Überprüfung und Anpassung der Controlling-Prozesse und -Instrumente basierend auf neuen Erkenntnissen und technologischen Entwicklungen.
 - Feedback-Schleifen: Einrichtung von Feedback-Schleifen zwischen den Akteuren zur kontinuierlichen Verbesserung und Anpassung der Maßnahmen.

8.2 Akteurspezifische Aufgaben im Controlling-Prozess

Nachfolgend werden akteurspezifische Aufgaben im Controlling-Prozess aufgezeigt:

Kommunalverwaltung

- Leitung: Koordination der Datenerhebung und -analyse, Sicherstellung der Einhaltung der Berichtszyklen.
- Berichterstellung: Erstellung und Verteilung der regelmäßigen Berichte.

Lokale Energieversorger

- Datenbereitstellung: Bereitstellung von Daten zur Energieerzeugung und -verbrauch, Betriebskosten und Effizienz der Systeme.
- Technische Analysen: Durchführung technischer Analysen zur Identifikation von Optimierungspotenzialen.

Bürgerinnen und Bürger

- Rückmeldung: Bereitstellung von Rückmeldungen zu den installierten Systemen und deren Performance.
- Teilnahme an Umfragen: Teilnahme an regelmäßigen Umfragen zur Erhebung zusätzlicher Daten.

Wohnungsbaugesellschaften und Immobilienentwickler

- Berichtspflichten: Regelmäßige Berichterstattung über Fortschritte bei Neubauten und Sanierungsprojekten.
- Kooperation: Zusammenarbeit bei der Erhebung und Analyse von Daten.

Handwerksbetriebe und Fachfirmen

- Qualitätssicherung: Sicherstellung der Qualität der installierten Systeme durch regelmäßige Wartungsberichte und Rückmeldungen.
- Mängelreporting: Meldung von Installations- und Wartungsmängeln zur schnellen Behebung.

8.3 Maßnahmen zur Implementierung des Controlling-Konzepts

1. Einrichtung einer Controlling-Abteilung: Einrichtung einer dauerhaften Aufgabe innerhalb der Kommunalverwaltung zur Steuerung und Überwachung des Controlling-Prozesses.

- 2. Schulung und Weiterbildung: Schulung der beteiligten Akteure in den Bereichen Datenerhebung, -analyse und Berichtserstellung.
- 3. Technologische Unterstützung: Einsatz moderner Technologien und Softwarelösungen zur Erhebung, Analyse und Visualisierung der Daten.
- 4. Feedback-Mechanismen: Einrichtung von Feedback-Mechanismen zur kontinuierlichen Verbesserung und Anpassung der Maßnahmen.

Durch die Implementierung dieses Controlling-Konzepts kann die Verbandsgemeinde Ruwer sicherstellen, dass die Wärmewende nachhaltig und effizient voranschreitet. Regelmäßige Überprüfungen und Anpassungen gewährleisten die kontinuierliche Optimierung der Prozesse und die erfolgreiche Umsetzung der Wärmeplanung.

9 Beteiligung und Kommunikation

Im Rahmen der Wärmeplanung in der Verbandsgemeinde Ruwer wurden verschiedene Maßnahmen getroffen, um den Bürgern Informationen zur Verfügung zu stellen. Dies ist entscheidend, um Akzeptanz und Unterstützung für das Projekt zu gewährleisten. Im Folgenden werden die wesentlichen Maßnahmen und Aktivitäten im Bereich Beteiligung und Kommunikation beschrieben:

9.1 Einrichtung einer Projektwebseite

Zu Beginn des Projekts wurde eine Themenseite auf der Webseite eingerichtet: https://www.ru-wer.de/bauen-wirtschaft/klimaschutz/waermeplanung/. Diese Webseite dient als zentrale Informationsplattform für alle Interessierten. Sie bietet umfassende Informationen über die Ziele, den Fortschritt und die einzelnen Schritte des Wärmeplanungsprojekts. Auf der Webseite werden regelmäßig Aktualisierungen, Berichte und relevante Dokumente veröffentlicht, um die Bürger stets auf dem neuesten Stand zu halten.

9.2 Einbindung der Ortsbürgermeister

Ein weiterer wichtiger Schritt war die direkte Einbindung der Bürgermeister der einzelnen Ortsgemeinden. Diese wurden aktiv um ihre Ideen und Vorschläge zur Wärmeplanung gebeten. Durch diese Zusammenarbeit konnte sichergestellt werden, dass die spezifischen Bedürfnisse und Gegebenheiten jeder Gemeinde berücksichtigt werden. Zudem fungieren die Ortsbürgermeister als Multiplikatoren und Kommunikationsschnittstellen zu den Bürgern ihrer Gemeinden.

9.3 Kommunikation über E-Mail

Um den Dialog mit den Bürgern zu erleichtern und eine unkomplizierte Möglichkeit zur Klärung von Fragen zu bieten, wurde die E-Mail-Adresse waermeplanung@ruwer.de eingerichtet. Über diese E-Mail-Adresse konnten Bürger ihre Fragen und Anregungen direkt an das Projektteam richten.

10 Literaturverzeichnis

- [1] Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (Wärmeplanungsgesetz WPG). 2024.
- [2] Gesetz zur Einsparung von Energie und zur Nutzung erneuerbarer Energien zur Wärme- und Kälteerzeugung in Gebäuden. 2020. [Online]. Verfügbar unter: https://www.gesetze-im-internet.de/geg/GEG.pdf
- [3] dena, "GEG 2024". [Online]. Verfügbar unter: https://www.gebaeudeforum.de/ordnungs-recht/geg/#c7113
- [4] AG Energiebilanzen e.V., "Auswertungstabellen zur Energiebilanz Deutschland". 30. November 2023. [Online]. Verfügbar unter: https://ag-energiebilanzen.de/daten-und-fakten/auswertungstabellen/
- [5] Institut Wohnen und Umwelt (IWU), "Deutsche Wohngebäudetypologie". 10. Februar 2015. [Online]. Verfügbar unter: https://www.iwu.de/fileadmin/publikationen/gebaeudebestand/episcope/2015_IWU_LogaEtAl_Deutsche-Wohngeb%C3%A4udetypologie.pdf
- [6] IBS Ingenieurbüro für Haustechnik Schreiner, "Energetische, thermodynamische und bauphysikalische Begriffe und Zusammenhänge". [Online]. Verfügbar unter: http://energieberatung.ibs-hlk.de/eb_begr.htm
- [7] Institut Wohnen und Umwelt (IWU), "Datenbasis Gebäudebestand", Dez. 2010. [Online]. Verfügbar unter: https://datenbasis.iwu.de/dl/Endbericht_Datenbasis.pdf
- [8] "BHKW vier Buchstaben für mehr Effizienz SHK Profi". Zugegriffen: 29. Juli 2024. [Online]. Verfügbar unter: https://www.shk-profi.de/artikel/shk_BHKW_vier_Buchstaben_fuer_mehr_Effizienz-3530375.html
- [9] Guidhouse, "Ausblick auf potenziell die MEPS erfüllende Maßnahmen für Einfamilienhäuser in Deutschland". 24. August 2023. [Online]. Verfügbar unter: https://deneff.org/wp-content/up-loads/2023/09/20230829 Abschlusspraesentation Guidehouse MEPS EFH.pdf
- [10] Institut Wohnen und Umwelt (IWU), "Energieeinsparung durch Verbesserung des Wärmeschutzes und Modernisierung der Heizungsanlage für 31 Musterhäuser der Gebäudetypologie". 22. Januar 2003. [Online]. Verfügbar unter: https://www.iwu.de/fileadmin/publikationen/gebaeudebestand/2003_IWU_BornEtAl_Energieeinsparung-für-31-Musterhäuser-der-Gebäudetypologie.pdf
- [11] Vaillant, "Vorlauftemperatur: Fußbodenheizung & Heizanlage richtig einstellen". Zugegriffen: 24. Juli 2024. [Online]. Verfügbar unter: http://www.vaillant.de/heizung/heizung-verstehen/tipps-rund-um-ihre-heizung/vorlauf-rucklauftemperatur/
- [12] Umweltbundesamtes, "Wohnen und Sanieren", 2019. [Online]. Verfügbar unter: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-05-23_cc_22-2019_wohnenundsanieren_hintergrundbericht.pdf
- [13] "Kommunale Wärmeplanung Einführung in den Technikkatalog", 2023. [Online]. Verfügbar unter: https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/2_Presse_und_Service/Publikationen/Energie/Kommunale-Waermeplanung-Einfuehrung-in-den-Technikkatalog.pdf
- [14] D. Brumme, "BEG EM: Heizungstausch 2024 Förderung auf einen Blick", 2024. [Online]. Verfügbar unter: https://blog.paradigma.de/beg-em-heizungstausch-2024-foerderung-auf-einen-blick/

11 Abbildungsverzeichnis

Abbildung 1: Handlungsempfehlungen für Immobilieneigentümer nach Veröffentlicht Wärmeplanung	_
Abbildung 2: Methode der Untersuchung und Datenhaltung	
Abbildung 3: Energiesparrecht in Deutschland – Historischer Überblick [3]	
Abbildung 4: Energiebedarf in Deutschland in den Sektoren Haushalte, Gewerbe-	
Dienstleistungen, Verkehr und Industrie aufgeteilt nach Energieträgern und Verwendung [4]	
Abbildung 5: Trinkwassererhitzung nach Gebäudetyp [7]	
Abbildung 6: Jahresdauerlinie aufgeteilt nach Raumwärme und Trinkwarmwasser	
Abbildung 7: Jahresdauerlinie aufgeteilt nach Grundlast (BHKW) und Spitzenlast (Gas)	
Abbildung 8: Prozentualer Anteil der gedämmten Flächen von Außenwänden, Fu	
Kellerdecken und Dächern in verschiedenen Wohngebäudetypen, unterteilt nach Baujahren	
2010) [7]	
Abbildung 9: Nachträglich gedämmte Bauteilfläche von Außenwänden, Fußböden/Kellerdec	
Dächern (Stand 2010) [6]	
Abbildung 10: Mögliche Ausführungen der wesentlichen Bauteile von Gebäuden hinsicht	
Dämmung [10]	
Abbildung 11: Temperaturklassen und Heizkörper	
Abbildung 12: Heizkurven verschiedener Heizsysteme [11]	
Abbildung 13: Art der Wärmedämmung im Überblick und nach Wandtypen [7]	
Abbildung 14: Verglasungsarten nach Fensterbaujahr in Deutschland [7]	
Abbildung 15: Sanierungsrate und -zyklus [12]	
Abbildung 16: EE-Technologien zur Wärmeerzeugung	
Abbildung 17: Typische Wärme-Jahresdauerlinie von Haushalten für ein Hybridsystem	
Abbildung 18: Preisentwicklung der Energieträger [13]	
Abbildung 19: BEG Förderung [14]	
Abbildung 20: Übersichtskarte der Verbandsgemeinde Ruwer	
Abbildung 21: Endenergie nach Energieträger in MWh	
Abbildung 22: Endenergie nach Sektor in MWh	
Abbildung 23: EE-Anteil der Wärmeversorgung im Status quo	
Abbildung 24: Wärmebedarf der dezentralen Wärmeerzeuger	
Abbildung 25: Treibhausgasemissionen (CO ₂) nach Energieträger in kg	
Abbildung 26: Dominierender Gebäudetyp nach Zensus-Typologie	
Abbildung 27: Dominierendes Baujahr eines Baublocks nach Zensus-Klassen	
Abbildung 28: Baualtersklassen auf Baublockebene	
Abbildung 29: Wärmeverbrauchsdichte in MWh/ha·a	
Abbildung 30: Wärmeliniendichte in der Verbandsgemeinde Ruwer in kWh/m	
Abbildung 31: Wärmeliniendichte in Waldrach	
Abbildung 32: Anteil des Verbrauchs an Heizöl für den Wärmebedarf je Baublock	
Abbildung 33: Anteil des Verbrauchs an elektrischen und sonstigen Wärmeerzeugern	
Wärmebedarf je Baublock	
Abbildung 34: Anteil des Verbrauchs an Biomasse für den Wärmebedarf je Baublock	
Abbildung 35: Anteil des Verbrauchs an Gas für den Wärmebedarf je Baublock	69

Abbildung 36: Gasnetzanschlussverfügbarkeit nach Baublöcken	70	
Abbildung 37: Potenziale für Freiflächen Anlagen der Verbandsgemeinde Ruwer in GWh/a.	72	
Abbildung 38: Ausschluss- und Eignungsgebiete für Geothermie	73	
Abbildung 39: Trockenwetterabfluss der Gemeinden in Liter pro Tag	76	
Abbildung 40: Übersicht der Potenziale		
Abbildung 41: Lösungsraum der Wärmetechnologien	82	
Abbildung 42: Volkswirtschaftliche Technologiepriorisierung	84	
Abbildung 43: Wärmepumpeneignungsidentifikation	85	
Abbildung 44: Wärmenetz- und Wärmepumpeneignung	86	
Abbildung 45: Entwicklung des Wärmebedarfs	88	
Abbildung 46: Sanierungsszenarien ROI (Sanierungsklasse 3)	89	
Abbildung 47: Entwicklung Wärmebedarf nach Energieträger	90	
Abbildung 48: Treibhausgasemissionen des Wärmebedarfs		
Abbildung 49: Anteil der leitungsgebundenen Wärmeversorgung am g	•	
Endenergieverbrauch der Wärmeversorgung		
Abbildung 50: Anzahl und Anteil der Gebäude mit Anschluss an ein Wärmenetz		
Abbildung 51: Endenergieverbrauch aus Gasnetzen nach Energieträgern und der A		
Energieträger am gesamten Endenergieverbrauch der gasförmigen Energieträger		
Abbildung 52: Gebäude mit Anschluss ans Gasnetz und Anteil im beplanten Gebiet		
Abbildung 53: Wärmenetzeignungswahrscheinlichkeit je Baublock		
Abbildung 54: Wärmepumpeneignungswahrscheinlichkeit		
Abbildung 55: Potenzielle Wärmenetzgebiete und EE-Potenziale	98	
12 Tabellenverzeichnis		
Tabelle 1: Charakterisierung der Wohngebäude nach Baujahresklassen nach IWU [5]	24	
Tabelle 2: Typische Heizwärmebedarfe von Wohngebäuden	25	
Tabelle 3: Heizlastdichte in W/m² für unterschiedliche Baujahre und Gebäudetypen [6]	25	
Tabelle 4: Datenquellen für die Bestands- und Potenzialanalyse	55	
Tabelle 5: Biomassequellen und Energieerträge in der Verbandsgemeinde Ruwer		
Tabelle 6: Betrachtete Sanierungsklassen	87	
Tabelle 7: Aufgaben der Akteure	144	